| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sseqval.1 |
|- ( ph -> S e. _V ) |
| 2 |
|
sseqval.2 |
|- ( ph -> M e. Word S ) |
| 3 |
|
sseqval.3 |
|- W = ( Word S i^i ( `' # " ( ZZ>= ` ( # ` M ) ) ) ) |
| 4 |
|
sseqval.4 |
|- ( ph -> F : W --> S ) |
| 5 |
|
sseqfv2.4 |
|- ( ph -> N e. ( ZZ>= ` ( # ` M ) ) ) |
| 6 |
1 2 3 4 5
|
sseqfv2 |
|- ( ph -> ( ( M seqstr F ) ` N ) = ( lastS ` ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` N ) ) ) |
| 7 |
|
fveq2 |
|- ( i = ( # ` M ) -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` i ) = ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` ( # ` M ) ) ) |
| 8 |
|
oveq2 |
|- ( i = ( # ` M ) -> ( 0 ..^ i ) = ( 0 ..^ ( # ` M ) ) ) |
| 9 |
8
|
reseq2d |
|- ( i = ( # ` M ) -> ( ( M seqstr F ) |` ( 0 ..^ i ) ) = ( ( M seqstr F ) |` ( 0 ..^ ( # ` M ) ) ) ) |
| 10 |
9
|
fveq2d |
|- ( i = ( # ` M ) -> ( F ` ( ( M seqstr F ) |` ( 0 ..^ i ) ) ) = ( F ` ( ( M seqstr F ) |` ( 0 ..^ ( # ` M ) ) ) ) ) |
| 11 |
10
|
s1eqd |
|- ( i = ( # ` M ) -> <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ i ) ) ) "> = <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ ( # ` M ) ) ) ) "> ) |
| 12 |
9 11
|
oveq12d |
|- ( i = ( # ` M ) -> ( ( ( M seqstr F ) |` ( 0 ..^ i ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ i ) ) ) "> ) = ( ( ( M seqstr F ) |` ( 0 ..^ ( # ` M ) ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ ( # ` M ) ) ) ) "> ) ) |
| 13 |
7 12
|
eqeq12d |
|- ( i = ( # ` M ) -> ( ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` i ) = ( ( ( M seqstr F ) |` ( 0 ..^ i ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ i ) ) ) "> ) <-> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` ( # ` M ) ) = ( ( ( M seqstr F ) |` ( 0 ..^ ( # ` M ) ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ ( # ` M ) ) ) ) "> ) ) ) |
| 14 |
13
|
imbi2d |
|- ( i = ( # ` M ) -> ( ( ph -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` i ) = ( ( ( M seqstr F ) |` ( 0 ..^ i ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ i ) ) ) "> ) ) <-> ( ph -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` ( # ` M ) ) = ( ( ( M seqstr F ) |` ( 0 ..^ ( # ` M ) ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ ( # ` M ) ) ) ) "> ) ) ) ) |
| 15 |
|
fveq2 |
|- ( i = n -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` i ) = ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) ) |
| 16 |
|
oveq2 |
|- ( i = n -> ( 0 ..^ i ) = ( 0 ..^ n ) ) |
| 17 |
16
|
reseq2d |
|- ( i = n -> ( ( M seqstr F ) |` ( 0 ..^ i ) ) = ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) |
| 18 |
17
|
fveq2d |
|- ( i = n -> ( F ` ( ( M seqstr F ) |` ( 0 ..^ i ) ) ) = ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) ) |
| 19 |
18
|
s1eqd |
|- ( i = n -> <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ i ) ) ) "> = <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) "> ) |
| 20 |
17 19
|
oveq12d |
|- ( i = n -> ( ( ( M seqstr F ) |` ( 0 ..^ i ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ i ) ) ) "> ) = ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) "> ) ) |
| 21 |
15 20
|
eqeq12d |
|- ( i = n -> ( ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` i ) = ( ( ( M seqstr F ) |` ( 0 ..^ i ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ i ) ) ) "> ) <-> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) = ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) "> ) ) ) |
| 22 |
21
|
imbi2d |
|- ( i = n -> ( ( ph -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` i ) = ( ( ( M seqstr F ) |` ( 0 ..^ i ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ i ) ) ) "> ) ) <-> ( ph -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) = ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) "> ) ) ) ) |
| 23 |
|
fveq2 |
|- ( i = ( n + 1 ) -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` i ) = ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` ( n + 1 ) ) ) |
| 24 |
|
oveq2 |
|- ( i = ( n + 1 ) -> ( 0 ..^ i ) = ( 0 ..^ ( n + 1 ) ) ) |
| 25 |
24
|
reseq2d |
|- ( i = ( n + 1 ) -> ( ( M seqstr F ) |` ( 0 ..^ i ) ) = ( ( M seqstr F ) |` ( 0 ..^ ( n + 1 ) ) ) ) |
| 26 |
25
|
fveq2d |
|- ( i = ( n + 1 ) -> ( F ` ( ( M seqstr F ) |` ( 0 ..^ i ) ) ) = ( F ` ( ( M seqstr F ) |` ( 0 ..^ ( n + 1 ) ) ) ) ) |
| 27 |
26
|
s1eqd |
|- ( i = ( n + 1 ) -> <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ i ) ) ) "> = <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ ( n + 1 ) ) ) ) "> ) |
| 28 |
25 27
|
oveq12d |
|- ( i = ( n + 1 ) -> ( ( ( M seqstr F ) |` ( 0 ..^ i ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ i ) ) ) "> ) = ( ( ( M seqstr F ) |` ( 0 ..^ ( n + 1 ) ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ ( n + 1 ) ) ) ) "> ) ) |
| 29 |
23 28
|
eqeq12d |
|- ( i = ( n + 1 ) -> ( ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` i ) = ( ( ( M seqstr F ) |` ( 0 ..^ i ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ i ) ) ) "> ) <-> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` ( n + 1 ) ) = ( ( ( M seqstr F ) |` ( 0 ..^ ( n + 1 ) ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ ( n + 1 ) ) ) ) "> ) ) ) |
| 30 |
29
|
imbi2d |
|- ( i = ( n + 1 ) -> ( ( ph -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` i ) = ( ( ( M seqstr F ) |` ( 0 ..^ i ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ i ) ) ) "> ) ) <-> ( ph -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` ( n + 1 ) ) = ( ( ( M seqstr F ) |` ( 0 ..^ ( n + 1 ) ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ ( n + 1 ) ) ) ) "> ) ) ) ) |
| 31 |
|
fveq2 |
|- ( i = N -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` i ) = ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` N ) ) |
| 32 |
|
oveq2 |
|- ( i = N -> ( 0 ..^ i ) = ( 0 ..^ N ) ) |
| 33 |
32
|
reseq2d |
|- ( i = N -> ( ( M seqstr F ) |` ( 0 ..^ i ) ) = ( ( M seqstr F ) |` ( 0 ..^ N ) ) ) |
| 34 |
33
|
fveq2d |
|- ( i = N -> ( F ` ( ( M seqstr F ) |` ( 0 ..^ i ) ) ) = ( F ` ( ( M seqstr F ) |` ( 0 ..^ N ) ) ) ) |
| 35 |
34
|
s1eqd |
|- ( i = N -> <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ i ) ) ) "> = <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ N ) ) ) "> ) |
| 36 |
33 35
|
oveq12d |
|- ( i = N -> ( ( ( M seqstr F ) |` ( 0 ..^ i ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ i ) ) ) "> ) = ( ( ( M seqstr F ) |` ( 0 ..^ N ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ N ) ) ) "> ) ) |
| 37 |
31 36
|
eqeq12d |
|- ( i = N -> ( ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` i ) = ( ( ( M seqstr F ) |` ( 0 ..^ i ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ i ) ) ) "> ) <-> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` N ) = ( ( ( M seqstr F ) |` ( 0 ..^ N ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ N ) ) ) "> ) ) ) |
| 38 |
37
|
imbi2d |
|- ( i = N -> ( ( ph -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` i ) = ( ( ( M seqstr F ) |` ( 0 ..^ i ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ i ) ) ) "> ) ) <-> ( ph -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` N ) = ( ( ( M seqstr F ) |` ( 0 ..^ N ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ N ) ) ) "> ) ) ) ) |
| 39 |
|
ovex |
|- ( M ++ <" ( F ` M ) "> ) e. _V |
| 40 |
|
lencl |
|- ( M e. Word S -> ( # ` M ) e. NN0 ) |
| 41 |
2 40
|
syl |
|- ( ph -> ( # ` M ) e. NN0 ) |
| 42 |
|
fvconst2g |
|- ( ( ( M ++ <" ( F ` M ) "> ) e. _V /\ ( # ` M ) e. NN0 ) -> ( ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ` ( # ` M ) ) = ( M ++ <" ( F ` M ) "> ) ) |
| 43 |
39 41 42
|
sylancr |
|- ( ph -> ( ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ` ( # ` M ) ) = ( M ++ <" ( F ` M ) "> ) ) |
| 44 |
40
|
nn0zd |
|- ( M e. Word S -> ( # ` M ) e. ZZ ) |
| 45 |
|
seq1 |
|- ( ( # ` M ) e. ZZ -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` ( # ` M ) ) = ( ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ` ( # ` M ) ) ) |
| 46 |
2 44 45
|
3syl |
|- ( ph -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` ( # ` M ) ) = ( ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ` ( # ` M ) ) ) |
| 47 |
1 2 3 4
|
sseqfres |
|- ( ph -> ( ( M seqstr F ) |` ( 0 ..^ ( # ` M ) ) ) = M ) |
| 48 |
47
|
fveq2d |
|- ( ph -> ( F ` ( ( M seqstr F ) |` ( 0 ..^ ( # ` M ) ) ) ) = ( F ` M ) ) |
| 49 |
48
|
s1eqd |
|- ( ph -> <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ ( # ` M ) ) ) ) "> = <" ( F ` M ) "> ) |
| 50 |
47 49
|
oveq12d |
|- ( ph -> ( ( ( M seqstr F ) |` ( 0 ..^ ( # ` M ) ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ ( # ` M ) ) ) ) "> ) = ( M ++ <" ( F ` M ) "> ) ) |
| 51 |
43 46 50
|
3eqtr4d |
|- ( ph -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` ( # ` M ) ) = ( ( ( M seqstr F ) |` ( 0 ..^ ( # ` M ) ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ ( # ` M ) ) ) ) "> ) ) |
| 52 |
51
|
a1i |
|- ( ( # ` M ) e. ZZ -> ( ph -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` ( # ` M ) ) = ( ( ( M seqstr F ) |` ( 0 ..^ ( # ` M ) ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ ( # ` M ) ) ) ) "> ) ) ) |
| 53 |
|
seqp1 |
|- ( n e. ( ZZ>= ` ( # ` M ) ) -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` ( n + 1 ) ) = ( ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) ( ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ` ( n + 1 ) ) ) ) |
| 54 |
53
|
adantl |
|- ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` ( n + 1 ) ) = ( ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) ( ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ` ( n + 1 ) ) ) ) |
| 55 |
|
id |
|- ( x = a -> x = a ) |
| 56 |
|
fveq2 |
|- ( x = a -> ( F ` x ) = ( F ` a ) ) |
| 57 |
56
|
s1eqd |
|- ( x = a -> <" ( F ` x ) "> = <" ( F ` a ) "> ) |
| 58 |
55 57
|
oveq12d |
|- ( x = a -> ( x ++ <" ( F ` x ) "> ) = ( a ++ <" ( F ` a ) "> ) ) |
| 59 |
|
eqidd |
|- ( y = b -> ( a ++ <" ( F ` a ) "> ) = ( a ++ <" ( F ` a ) "> ) ) |
| 60 |
58 59
|
cbvmpov |
|- ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) = ( a e. _V , b e. _V |-> ( a ++ <" ( F ` a ) "> ) ) |
| 61 |
60
|
a1i |
|- ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) -> ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) = ( a e. _V , b e. _V |-> ( a ++ <" ( F ` a ) "> ) ) ) |
| 62 |
|
simprl |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) /\ ( a = ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) /\ b = ( ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ` ( n + 1 ) ) ) ) -> a = ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) ) |
| 63 |
62
|
fveq2d |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) /\ ( a = ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) /\ b = ( ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ` ( n + 1 ) ) ) ) -> ( F ` a ) = ( F ` ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) ) ) |
| 64 |
63
|
s1eqd |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) /\ ( a = ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) /\ b = ( ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ` ( n + 1 ) ) ) ) -> <" ( F ` a ) "> = <" ( F ` ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) ) "> ) |
| 65 |
62 64
|
oveq12d |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) /\ ( a = ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) /\ b = ( ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ` ( n + 1 ) ) ) ) -> ( a ++ <" ( F ` a ) "> ) = ( ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) ++ <" ( F ` ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) ) "> ) ) |
| 66 |
|
fvexd |
|- ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) e. _V ) |
| 67 |
|
fvexd |
|- ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) -> ( ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ` ( n + 1 ) ) e. _V ) |
| 68 |
|
ovex |
|- ( ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) ++ <" ( F ` ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) ) "> ) e. _V |
| 69 |
68
|
a1i |
|- ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) -> ( ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) ++ <" ( F ` ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) ) "> ) e. _V ) |
| 70 |
61 65 66 67 69
|
ovmpod |
|- ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) -> ( ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) ( ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ` ( n + 1 ) ) ) = ( ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) ++ <" ( F ` ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) ) "> ) ) |
| 71 |
54 70
|
eqtrd |
|- ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` ( n + 1 ) ) = ( ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) ++ <" ( F ` ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) ) "> ) ) |
| 72 |
71
|
adantr |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) /\ ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) = ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) "> ) ) -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` ( n + 1 ) ) = ( ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) ++ <" ( F ` ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) ) "> ) ) |
| 73 |
1
|
adantr |
|- ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) -> S e. _V ) |
| 74 |
2
|
adantr |
|- ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) -> M e. Word S ) |
| 75 |
4
|
adantr |
|- ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) -> F : W --> S ) |
| 76 |
|
simpr |
|- ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) -> n e. ( ZZ>= ` ( # ` M ) ) ) |
| 77 |
73 74 3 75 76
|
sseqfv2 |
|- ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) -> ( ( M seqstr F ) ` n ) = ( lastS ` ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) ) ) |
| 78 |
77
|
adantr |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) /\ ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) = ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) "> ) ) -> ( ( M seqstr F ) ` n ) = ( lastS ` ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) ) ) |
| 79 |
|
simpr |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) /\ ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) = ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) "> ) ) -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) = ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) "> ) ) |
| 80 |
79
|
fveq2d |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) /\ ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) = ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) "> ) ) -> ( lastS ` ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) ) = ( lastS ` ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) "> ) ) ) |
| 81 |
1 2 3 4
|
sseqf |
|- ( ph -> ( M seqstr F ) : NN0 --> S ) |
| 82 |
|
fzo0ssnn0 |
|- ( 0 ..^ n ) C_ NN0 |
| 83 |
|
fssres |
|- ( ( ( M seqstr F ) : NN0 --> S /\ ( 0 ..^ n ) C_ NN0 ) -> ( ( M seqstr F ) |` ( 0 ..^ n ) ) : ( 0 ..^ n ) --> S ) |
| 84 |
81 82 83
|
sylancl |
|- ( ph -> ( ( M seqstr F ) |` ( 0 ..^ n ) ) : ( 0 ..^ n ) --> S ) |
| 85 |
|
iswrdi |
|- ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) : ( 0 ..^ n ) --> S -> ( ( M seqstr F ) |` ( 0 ..^ n ) ) e. Word S ) |
| 86 |
84 85
|
syl |
|- ( ph -> ( ( M seqstr F ) |` ( 0 ..^ n ) ) e. Word S ) |
| 87 |
86
|
adantr |
|- ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) -> ( ( M seqstr F ) |` ( 0 ..^ n ) ) e. Word S ) |
| 88 |
|
elex |
|- ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) e. Word S -> ( ( M seqstr F ) |` ( 0 ..^ n ) ) e. _V ) |
| 89 |
87 88
|
syl |
|- ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) -> ( ( M seqstr F ) |` ( 0 ..^ n ) ) e. _V ) |
| 90 |
81
|
adantr |
|- ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) -> ( M seqstr F ) : NN0 --> S ) |
| 91 |
|
eluznn0 |
|- ( ( ( # ` M ) e. NN0 /\ n e. ( ZZ>= ` ( # ` M ) ) ) -> n e. NN0 ) |
| 92 |
41 91
|
sylan |
|- ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) -> n e. NN0 ) |
| 93 |
73 90 92
|
subiwrdlen |
|- ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) -> ( # ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) = n ) |
| 94 |
93 76
|
eqeltrd |
|- ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) -> ( # ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) e. ( ZZ>= ` ( # ` M ) ) ) |
| 95 |
|
hashf |
|- # : _V --> ( NN0 u. { +oo } ) |
| 96 |
|
ffn |
|- ( # : _V --> ( NN0 u. { +oo } ) -> # Fn _V ) |
| 97 |
|
elpreima |
|- ( # Fn _V -> ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) e. ( `' # " ( ZZ>= ` ( # ` M ) ) ) <-> ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) e. _V /\ ( # ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) e. ( ZZ>= ` ( # ` M ) ) ) ) ) |
| 98 |
95 96 97
|
mp2b |
|- ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) e. ( `' # " ( ZZ>= ` ( # ` M ) ) ) <-> ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) e. _V /\ ( # ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) e. ( ZZ>= ` ( # ` M ) ) ) ) |
| 99 |
89 94 98
|
sylanbrc |
|- ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) -> ( ( M seqstr F ) |` ( 0 ..^ n ) ) e. ( `' # " ( ZZ>= ` ( # ` M ) ) ) ) |
| 100 |
87 99
|
elind |
|- ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) -> ( ( M seqstr F ) |` ( 0 ..^ n ) ) e. ( Word S i^i ( `' # " ( ZZ>= ` ( # ` M ) ) ) ) ) |
| 101 |
100 3
|
eleqtrrdi |
|- ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) -> ( ( M seqstr F ) |` ( 0 ..^ n ) ) e. W ) |
| 102 |
75 101
|
ffvelcdmd |
|- ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) -> ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) e. S ) |
| 103 |
|
lswccats1 |
|- ( ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) e. Word S /\ ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) e. S ) -> ( lastS ` ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) "> ) ) = ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) ) |
| 104 |
87 102 103
|
syl2anc |
|- ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) -> ( lastS ` ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) "> ) ) = ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) ) |
| 105 |
104
|
adantr |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) /\ ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) = ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) "> ) ) -> ( lastS ` ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) "> ) ) = ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) ) |
| 106 |
78 80 105
|
3eqtrrd |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) /\ ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) = ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) "> ) ) -> ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) = ( ( M seqstr F ) ` n ) ) |
| 107 |
106
|
s1eqd |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) /\ ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) = ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) "> ) ) -> <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) "> = <" ( ( M seqstr F ) ` n ) "> ) |
| 108 |
107
|
oveq2d |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) /\ ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) = ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) "> ) ) -> ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) "> ) = ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) ++ <" ( ( M seqstr F ) ` n ) "> ) ) |
| 109 |
73 90 92
|
iwrdsplit |
|- ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) -> ( ( M seqstr F ) |` ( 0 ..^ ( n + 1 ) ) ) = ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) ++ <" ( ( M seqstr F ) ` n ) "> ) ) |
| 110 |
109
|
adantr |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) /\ ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) = ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) "> ) ) -> ( ( M seqstr F ) |` ( 0 ..^ ( n + 1 ) ) ) = ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) ++ <" ( ( M seqstr F ) ` n ) "> ) ) |
| 111 |
108 79 110
|
3eqtr4d |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) /\ ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) = ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) "> ) ) -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) = ( ( M seqstr F ) |` ( 0 ..^ ( n + 1 ) ) ) ) |
| 112 |
111
|
fveq2d |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) /\ ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) = ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) "> ) ) -> ( F ` ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) ) = ( F ` ( ( M seqstr F ) |` ( 0 ..^ ( n + 1 ) ) ) ) ) |
| 113 |
112
|
s1eqd |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) /\ ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) = ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) "> ) ) -> <" ( F ` ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) ) "> = <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ ( n + 1 ) ) ) ) "> ) |
| 114 |
111 113
|
oveq12d |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) /\ ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) = ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) "> ) ) -> ( ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) ++ <" ( F ` ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) ) "> ) = ( ( ( M seqstr F ) |` ( 0 ..^ ( n + 1 ) ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ ( n + 1 ) ) ) ) "> ) ) |
| 115 |
72 114
|
eqtrd |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) /\ ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) = ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) "> ) ) -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` ( n + 1 ) ) = ( ( ( M seqstr F ) |` ( 0 ..^ ( n + 1 ) ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ ( n + 1 ) ) ) ) "> ) ) |
| 116 |
115
|
ex |
|- ( ( ph /\ n e. ( ZZ>= ` ( # ` M ) ) ) -> ( ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) = ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) "> ) -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` ( n + 1 ) ) = ( ( ( M seqstr F ) |` ( 0 ..^ ( n + 1 ) ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ ( n + 1 ) ) ) ) "> ) ) ) |
| 117 |
116
|
expcom |
|- ( n e. ( ZZ>= ` ( # ` M ) ) -> ( ph -> ( ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) = ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) "> ) -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` ( n + 1 ) ) = ( ( ( M seqstr F ) |` ( 0 ..^ ( n + 1 ) ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ ( n + 1 ) ) ) ) "> ) ) ) ) |
| 118 |
117
|
a2d |
|- ( n e. ( ZZ>= ` ( # ` M ) ) -> ( ( ph -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` n ) = ( ( ( M seqstr F ) |` ( 0 ..^ n ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ n ) ) ) "> ) ) -> ( ph -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` ( n + 1 ) ) = ( ( ( M seqstr F ) |` ( 0 ..^ ( n + 1 ) ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ ( n + 1 ) ) ) ) "> ) ) ) ) |
| 119 |
14 22 30 38 52 118
|
uzind4 |
|- ( N e. ( ZZ>= ` ( # ` M ) ) -> ( ph -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` N ) = ( ( ( M seqstr F ) |` ( 0 ..^ N ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ N ) ) ) "> ) ) ) |
| 120 |
5 119
|
mpcom |
|- ( ph -> ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` N ) = ( ( ( M seqstr F ) |` ( 0 ..^ N ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ N ) ) ) "> ) ) |
| 121 |
120
|
fveq2d |
|- ( ph -> ( lastS ` ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` N ) ) = ( lastS ` ( ( ( M seqstr F ) |` ( 0 ..^ N ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ N ) ) ) "> ) ) ) |
| 122 |
|
fzo0ssnn0 |
|- ( 0 ..^ N ) C_ NN0 |
| 123 |
|
fssres |
|- ( ( ( M seqstr F ) : NN0 --> S /\ ( 0 ..^ N ) C_ NN0 ) -> ( ( M seqstr F ) |` ( 0 ..^ N ) ) : ( 0 ..^ N ) --> S ) |
| 124 |
81 122 123
|
sylancl |
|- ( ph -> ( ( M seqstr F ) |` ( 0 ..^ N ) ) : ( 0 ..^ N ) --> S ) |
| 125 |
|
iswrdi |
|- ( ( ( M seqstr F ) |` ( 0 ..^ N ) ) : ( 0 ..^ N ) --> S -> ( ( M seqstr F ) |` ( 0 ..^ N ) ) e. Word S ) |
| 126 |
124 125
|
syl |
|- ( ph -> ( ( M seqstr F ) |` ( 0 ..^ N ) ) e. Word S ) |
| 127 |
|
elex |
|- ( ( ( M seqstr F ) |` ( 0 ..^ N ) ) e. Word S -> ( ( M seqstr F ) |` ( 0 ..^ N ) ) e. _V ) |
| 128 |
126 127
|
syl |
|- ( ph -> ( ( M seqstr F ) |` ( 0 ..^ N ) ) e. _V ) |
| 129 |
|
eluznn0 |
|- ( ( ( # ` M ) e. NN0 /\ N e. ( ZZ>= ` ( # ` M ) ) ) -> N e. NN0 ) |
| 130 |
41 5 129
|
syl2anc |
|- ( ph -> N e. NN0 ) |
| 131 |
1 81 130
|
subiwrdlen |
|- ( ph -> ( # ` ( ( M seqstr F ) |` ( 0 ..^ N ) ) ) = N ) |
| 132 |
131 5
|
eqeltrd |
|- ( ph -> ( # ` ( ( M seqstr F ) |` ( 0 ..^ N ) ) ) e. ( ZZ>= ` ( # ` M ) ) ) |
| 133 |
|
elpreima |
|- ( # Fn _V -> ( ( ( M seqstr F ) |` ( 0 ..^ N ) ) e. ( `' # " ( ZZ>= ` ( # ` M ) ) ) <-> ( ( ( M seqstr F ) |` ( 0 ..^ N ) ) e. _V /\ ( # ` ( ( M seqstr F ) |` ( 0 ..^ N ) ) ) e. ( ZZ>= ` ( # ` M ) ) ) ) ) |
| 134 |
95 96 133
|
mp2b |
|- ( ( ( M seqstr F ) |` ( 0 ..^ N ) ) e. ( `' # " ( ZZ>= ` ( # ` M ) ) ) <-> ( ( ( M seqstr F ) |` ( 0 ..^ N ) ) e. _V /\ ( # ` ( ( M seqstr F ) |` ( 0 ..^ N ) ) ) e. ( ZZ>= ` ( # ` M ) ) ) ) |
| 135 |
128 132 134
|
sylanbrc |
|- ( ph -> ( ( M seqstr F ) |` ( 0 ..^ N ) ) e. ( `' # " ( ZZ>= ` ( # ` M ) ) ) ) |
| 136 |
126 135
|
elind |
|- ( ph -> ( ( M seqstr F ) |` ( 0 ..^ N ) ) e. ( Word S i^i ( `' # " ( ZZ>= ` ( # ` M ) ) ) ) ) |
| 137 |
136 3
|
eleqtrrdi |
|- ( ph -> ( ( M seqstr F ) |` ( 0 ..^ N ) ) e. W ) |
| 138 |
4 137
|
ffvelcdmd |
|- ( ph -> ( F ` ( ( M seqstr F ) |` ( 0 ..^ N ) ) ) e. S ) |
| 139 |
|
lswccats1 |
|- ( ( ( ( M seqstr F ) |` ( 0 ..^ N ) ) e. Word S /\ ( F ` ( ( M seqstr F ) |` ( 0 ..^ N ) ) ) e. S ) -> ( lastS ` ( ( ( M seqstr F ) |` ( 0 ..^ N ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ N ) ) ) "> ) ) = ( F ` ( ( M seqstr F ) |` ( 0 ..^ N ) ) ) ) |
| 140 |
126 138 139
|
syl2anc |
|- ( ph -> ( lastS ` ( ( ( M seqstr F ) |` ( 0 ..^ N ) ) ++ <" ( F ` ( ( M seqstr F ) |` ( 0 ..^ N ) ) ) "> ) ) = ( F ` ( ( M seqstr F ) |` ( 0 ..^ N ) ) ) ) |
| 141 |
6 121 140
|
3eqtrd |
|- ( ph -> ( ( M seqstr F ) ` N ) = ( F ` ( ( M seqstr F ) |` ( 0 ..^ N ) ) ) ) |