| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sseqval.1 |  |-  ( ph -> S e. _V ) | 
						
							| 2 |  | sseqval.2 |  |-  ( ph -> M e. Word S ) | 
						
							| 3 |  | sseqval.3 |  |-  W = ( Word S i^i ( `' # " ( ZZ>= ` ( # ` M ) ) ) ) | 
						
							| 4 |  | sseqval.4 |  |-  ( ph -> F : W --> S ) | 
						
							| 5 |  | sseqfv2.4 |  |-  ( ph -> N e. ( ZZ>= ` ( # ` M ) ) ) | 
						
							| 6 | 1 2 3 4 | sseqval |  |-  ( ph -> ( M seqstr F ) = ( M u. ( lastS o. seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) ) ) | 
						
							| 7 | 6 | fveq1d |  |-  ( ph -> ( ( M seqstr F ) ` N ) = ( ( M u. ( lastS o. seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) ) ` N ) ) | 
						
							| 8 |  | wrdfn |  |-  ( M e. Word S -> M Fn ( 0 ..^ ( # ` M ) ) ) | 
						
							| 9 | 2 8 | syl |  |-  ( ph -> M Fn ( 0 ..^ ( # ` M ) ) ) | 
						
							| 10 |  | fvex |  |-  ( x ` ( ( # ` x ) - 1 ) ) e. _V | 
						
							| 11 |  | df-lsw |  |-  lastS = ( x e. _V |-> ( x ` ( ( # ` x ) - 1 ) ) ) | 
						
							| 12 | 10 11 | fnmpti |  |-  lastS Fn _V | 
						
							| 13 | 12 | a1i |  |-  ( ph -> lastS Fn _V ) | 
						
							| 14 |  | lencl |  |-  ( M e. Word S -> ( # ` M ) e. NN0 ) | 
						
							| 15 | 2 14 | syl |  |-  ( ph -> ( # ` M ) e. NN0 ) | 
						
							| 16 | 15 | nn0zd |  |-  ( ph -> ( # ` M ) e. ZZ ) | 
						
							| 17 |  | seqfn |  |-  ( ( # ` M ) e. ZZ -> seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) Fn ( ZZ>= ` ( # ` M ) ) ) | 
						
							| 18 | 16 17 | syl |  |-  ( ph -> seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) Fn ( ZZ>= ` ( # ` M ) ) ) | 
						
							| 19 |  | ssv |  |-  ran seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) C_ _V | 
						
							| 20 | 19 | a1i |  |-  ( ph -> ran seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) C_ _V ) | 
						
							| 21 |  | fnco |  |-  ( ( lastS Fn _V /\ seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) Fn ( ZZ>= ` ( # ` M ) ) /\ ran seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) C_ _V ) -> ( lastS o. seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) Fn ( ZZ>= ` ( # ` M ) ) ) | 
						
							| 22 | 13 18 20 21 | syl3anc |  |-  ( ph -> ( lastS o. seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) Fn ( ZZ>= ` ( # ` M ) ) ) | 
						
							| 23 |  | fzouzdisj |  |-  ( ( 0 ..^ ( # ` M ) ) i^i ( ZZ>= ` ( # ` M ) ) ) = (/) | 
						
							| 24 | 23 | a1i |  |-  ( ph -> ( ( 0 ..^ ( # ` M ) ) i^i ( ZZ>= ` ( # ` M ) ) ) = (/) ) | 
						
							| 25 |  | fvun2 |  |-  ( ( M Fn ( 0 ..^ ( # ` M ) ) /\ ( lastS o. seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) Fn ( ZZ>= ` ( # ` M ) ) /\ ( ( ( 0 ..^ ( # ` M ) ) i^i ( ZZ>= ` ( # ` M ) ) ) = (/) /\ N e. ( ZZ>= ` ( # ` M ) ) ) ) -> ( ( M u. ( lastS o. seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) ) ` N ) = ( ( lastS o. seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) ` N ) ) | 
						
							| 26 | 9 22 24 5 25 | syl112anc |  |-  ( ph -> ( ( M u. ( lastS o. seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) ) ` N ) = ( ( lastS o. seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) ` N ) ) | 
						
							| 27 |  | fnfun |  |-  ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) Fn ( ZZ>= ` ( # ` M ) ) -> Fun seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) | 
						
							| 28 | 18 27 | syl |  |-  ( ph -> Fun seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) | 
						
							| 29 |  | fvexd |  |-  ( ph -> ( ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ` ( # ` M ) ) e. _V ) | 
						
							| 30 |  | ovexd |  |-  ( ( ph /\ ( a e. _V /\ b e. _V ) ) -> ( a ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) b ) e. _V ) | 
						
							| 31 |  | eqid |  |-  ( ZZ>= ` ( # ` M ) ) = ( ZZ>= ` ( # ` M ) ) | 
						
							| 32 |  | fvexd |  |-  ( ( ph /\ a e. ( ZZ>= ` ( ( # ` M ) + 1 ) ) ) -> ( ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ` a ) e. _V ) | 
						
							| 33 | 29 30 31 16 32 | seqf2 |  |-  ( ph -> seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) : ( ZZ>= ` ( # ` M ) ) --> _V ) | 
						
							| 34 | 33 | fdmd |  |-  ( ph -> dom seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) = ( ZZ>= ` ( # ` M ) ) ) | 
						
							| 35 | 5 34 | eleqtrrd |  |-  ( ph -> N e. dom seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) | 
						
							| 36 |  | fvco |  |-  ( ( Fun seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) /\ N e. dom seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) -> ( ( lastS o. seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) ` N ) = ( lastS ` ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` N ) ) ) | 
						
							| 37 | 28 35 36 | syl2anc |  |-  ( ph -> ( ( lastS o. seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) ` N ) = ( lastS ` ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` N ) ) ) | 
						
							| 38 | 7 26 37 | 3eqtrd |  |-  ( ph -> ( ( M seqstr F ) ` N ) = ( lastS ` ( seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ` N ) ) ) |