| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sseqval.1 | ⊢ ( 𝜑  →  𝑆  ∈  V ) | 
						
							| 2 |  | sseqval.2 | ⊢ ( 𝜑  →  𝑀  ∈  Word  𝑆 ) | 
						
							| 3 |  | sseqval.3 | ⊢ 𝑊  =  ( Word  𝑆  ∩  ( ◡ ♯  “  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) | 
						
							| 4 |  | sseqval.4 | ⊢ ( 𝜑  →  𝐹 : 𝑊 ⟶ 𝑆 ) | 
						
							| 5 |  | sseqfv2.4 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) | 
						
							| 6 | 1 2 3 4 | sseqval | ⊢ ( 𝜑  →  ( 𝑀 seqstr 𝐹 )  =  ( 𝑀  ∪  ( lastS  ∘  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) ) ) | 
						
							| 7 | 6 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝑀 seqstr 𝐹 ) ‘ 𝑁 )  =  ( ( 𝑀  ∪  ( lastS  ∘  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) ) ‘ 𝑁 ) ) | 
						
							| 8 |  | wrdfn | ⊢ ( 𝑀  ∈  Word  𝑆  →  𝑀  Fn  ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ) | 
						
							| 9 | 2 8 | syl | ⊢ ( 𝜑  →  𝑀  Fn  ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ) | 
						
							| 10 |  | fvex | ⊢ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 )  −  1 ) )  ∈  V | 
						
							| 11 |  | df-lsw | ⊢ lastS  =  ( 𝑥  ∈  V  ↦  ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 )  −  1 ) ) ) | 
						
							| 12 | 10 11 | fnmpti | ⊢ lastS  Fn  V | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  lastS  Fn  V ) | 
						
							| 14 |  | lencl | ⊢ ( 𝑀  ∈  Word  𝑆  →  ( ♯ ‘ 𝑀 )  ∈  ℕ0 ) | 
						
							| 15 | 2 14 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑀 )  ∈  ℕ0 ) | 
						
							| 16 | 15 | nn0zd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑀 )  ∈  ℤ ) | 
						
							| 17 |  | seqfn | ⊢ ( ( ♯ ‘ 𝑀 )  ∈  ℤ  →  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) )  Fn  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝜑  →  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) )  Fn  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) | 
						
							| 19 |  | ssv | ⊢ ran  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) )  ⊆  V | 
						
							| 20 | 19 | a1i | ⊢ ( 𝜑  →  ran  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) )  ⊆  V ) | 
						
							| 21 |  | fnco | ⊢ ( ( lastS  Fn  V  ∧  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) )  Fn  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) )  ∧  ran  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) )  ⊆  V )  →  ( lastS  ∘  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) )  Fn  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) | 
						
							| 22 | 13 18 20 21 | syl3anc | ⊢ ( 𝜑  →  ( lastS  ∘  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) )  Fn  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) | 
						
							| 23 |  | fzouzdisj | ⊢ ( ( 0 ..^ ( ♯ ‘ 𝑀 ) )  ∩  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) )  =  ∅ | 
						
							| 24 | 23 | a1i | ⊢ ( 𝜑  →  ( ( 0 ..^ ( ♯ ‘ 𝑀 ) )  ∩  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) )  =  ∅ ) | 
						
							| 25 |  | fvun2 | ⊢ ( ( 𝑀  Fn  ( 0 ..^ ( ♯ ‘ 𝑀 ) )  ∧  ( lastS  ∘  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) )  Fn  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) )  ∧  ( ( ( 0 ..^ ( ♯ ‘ 𝑀 ) )  ∩  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) )  =  ∅  ∧  𝑁  ∈  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) )  →  ( ( 𝑀  ∪  ( lastS  ∘  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) ) ‘ 𝑁 )  =  ( ( lastS  ∘  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) ‘ 𝑁 ) ) | 
						
							| 26 | 9 22 24 5 25 | syl112anc | ⊢ ( 𝜑  →  ( ( 𝑀  ∪  ( lastS  ∘  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) ) ‘ 𝑁 )  =  ( ( lastS  ∘  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) ‘ 𝑁 ) ) | 
						
							| 27 |  | fnfun | ⊢ ( seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) )  Fn  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) )  →  Fun  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) | 
						
							| 28 | 18 27 | syl | ⊢ ( 𝜑  →  Fun  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) | 
						
							| 29 |  | fvexd | ⊢ ( 𝜑  →  ( ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ‘ ( ♯ ‘ 𝑀 ) )  ∈  V ) | 
						
							| 30 |  | ovexd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  V  ∧  𝑏  ∈  V ) )  →  ( 𝑎 ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) 𝑏 )  ∈  V ) | 
						
							| 31 |  | eqid | ⊢ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) )  =  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) | 
						
							| 32 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ 𝑀 )  +  1 ) ) )  →  ( ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ‘ 𝑎 )  ∈  V ) | 
						
							| 33 | 29 30 31 16 32 | seqf2 | ⊢ ( 𝜑  →  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) : ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ⟶ V ) | 
						
							| 34 | 33 | fdmd | ⊢ ( 𝜑  →  dom  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) )  =  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) | 
						
							| 35 | 5 34 | eleqtrrd | ⊢ ( 𝜑  →  𝑁  ∈  dom  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) | 
						
							| 36 |  | fvco | ⊢ ( ( Fun  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) )  ∧  𝑁  ∈  dom  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) )  →  ( ( lastS  ∘  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) ‘ 𝑁 )  =  ( lastS ‘ ( seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ‘ 𝑁 ) ) ) | 
						
							| 37 | 28 35 36 | syl2anc | ⊢ ( 𝜑  →  ( ( lastS  ∘  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) ‘ 𝑁 )  =  ( lastS ‘ ( seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ‘ 𝑁 ) ) ) | 
						
							| 38 | 7 26 37 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝑀 seqstr 𝐹 ) ‘ 𝑁 )  =  ( lastS ‘ ( seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ‘ 𝑁 ) ) ) |