Step |
Hyp |
Ref |
Expression |
1 |
|
sseqval.1 |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
2 |
|
sseqval.2 |
⊢ ( 𝜑 → 𝑀 ∈ Word 𝑆 ) |
3 |
|
sseqval.3 |
⊢ 𝑊 = ( Word 𝑆 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) |
4 |
|
sseqval.4 |
⊢ ( 𝜑 → 𝐹 : 𝑊 ⟶ 𝑆 ) |
5 |
|
df-sseq |
⊢ seqstr = ( 𝑚 ∈ V , 𝑓 ∈ V ↦ ( 𝑚 ∪ ( lastS ∘ seq ( ♯ ‘ 𝑚 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝑓 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑚 ++ 〈“ ( 𝑓 ‘ 𝑚 ) ”〉 ) } ) ) ) ) ) |
6 |
5
|
a1i |
⊢ ( 𝜑 → seqstr = ( 𝑚 ∈ V , 𝑓 ∈ V ↦ ( 𝑚 ∪ ( lastS ∘ seq ( ♯ ‘ 𝑚 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝑓 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑚 ++ 〈“ ( 𝑓 ‘ 𝑚 ) ”〉 ) } ) ) ) ) ) ) |
7 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑚 = 𝑀 ∧ 𝑓 = 𝐹 ) ) → 𝑚 = 𝑀 ) |
8 |
7
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑚 = 𝑀 ∧ 𝑓 = 𝐹 ) ) → ( ♯ ‘ 𝑚 ) = ( ♯ ‘ 𝑀 ) ) |
9 |
|
simp1rr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 = 𝑀 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V ) → 𝑓 = 𝐹 ) |
10 |
9
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 = 𝑀 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
11 |
10
|
s1eqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 = 𝑀 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V ) → 〈“ ( 𝑓 ‘ 𝑥 ) ”〉 = 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) |
12 |
11
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 = 𝑀 ∧ 𝑓 = 𝐹 ) ) ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑥 ++ 〈“ ( 𝑓 ‘ 𝑥 ) ”〉 ) = ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) |
13 |
12
|
mpoeq3dva |
⊢ ( ( 𝜑 ∧ ( 𝑚 = 𝑀 ∧ 𝑓 = 𝐹 ) ) → ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝑓 ‘ 𝑥 ) ”〉 ) ) = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ) |
14 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑚 = 𝑀 ∧ 𝑓 = 𝐹 ) ) → 𝑓 = 𝐹 ) |
15 |
14 7
|
fveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑚 = 𝑀 ∧ 𝑓 = 𝐹 ) ) → ( 𝑓 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑀 ) ) |
16 |
15
|
s1eqd |
⊢ ( ( 𝜑 ∧ ( 𝑚 = 𝑀 ∧ 𝑓 = 𝐹 ) ) → 〈“ ( 𝑓 ‘ 𝑚 ) ”〉 = 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) |
17 |
7 16
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑚 = 𝑀 ∧ 𝑓 = 𝐹 ) ) → ( 𝑚 ++ 〈“ ( 𝑓 ‘ 𝑚 ) ”〉 ) = ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) ) |
18 |
17
|
sneqd |
⊢ ( ( 𝜑 ∧ ( 𝑚 = 𝑀 ∧ 𝑓 = 𝐹 ) ) → { ( 𝑚 ++ 〈“ ( 𝑓 ‘ 𝑚 ) ”〉 ) } = { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) |
19 |
18
|
xpeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑚 = 𝑀 ∧ 𝑓 = 𝐹 ) ) → ( ℕ0 × { ( 𝑚 ++ 〈“ ( 𝑓 ‘ 𝑚 ) ”〉 ) } ) = ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) |
20 |
8 13 19
|
seqeq123d |
⊢ ( ( 𝜑 ∧ ( 𝑚 = 𝑀 ∧ 𝑓 = 𝐹 ) ) → seq ( ♯ ‘ 𝑚 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝑓 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑚 ++ 〈“ ( 𝑓 ‘ 𝑚 ) ”〉 ) } ) ) = seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) |
21 |
20
|
coeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑚 = 𝑀 ∧ 𝑓 = 𝐹 ) ) → ( lastS ∘ seq ( ♯ ‘ 𝑚 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝑓 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑚 ++ 〈“ ( 𝑓 ‘ 𝑚 ) ”〉 ) } ) ) ) = ( lastS ∘ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) ) |
22 |
7 21
|
uneq12d |
⊢ ( ( 𝜑 ∧ ( 𝑚 = 𝑀 ∧ 𝑓 = 𝐹 ) ) → ( 𝑚 ∪ ( lastS ∘ seq ( ♯ ‘ 𝑚 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝑓 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑚 ++ 〈“ ( 𝑓 ‘ 𝑚 ) ”〉 ) } ) ) ) ) = ( 𝑀 ∪ ( lastS ∘ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) ) ) |
23 |
|
elex |
⊢ ( 𝑀 ∈ Word 𝑆 → 𝑀 ∈ V ) |
24 |
2 23
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ V ) |
25 |
|
wrdexg |
⊢ ( 𝑆 ∈ V → Word 𝑆 ∈ V ) |
26 |
|
inex1g |
⊢ ( Word 𝑆 ∈ V → ( Word 𝑆 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) ∈ V ) |
27 |
1 25 26
|
3syl |
⊢ ( 𝜑 → ( Word 𝑆 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) ∈ V ) |
28 |
3 27
|
eqeltrid |
⊢ ( 𝜑 → 𝑊 ∈ V ) |
29 |
4 28
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
30 |
|
df-lsw |
⊢ lastS = ( 𝑥 ∈ V ↦ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ) |
31 |
30
|
funmpt2 |
⊢ Fun lastS |
32 |
31
|
a1i |
⊢ ( 𝜑 → Fun lastS ) |
33 |
|
seqex |
⊢ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ∈ V |
34 |
33
|
a1i |
⊢ ( 𝜑 → seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ∈ V ) |
35 |
|
cofunexg |
⊢ ( ( Fun lastS ∧ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ∈ V ) → ( lastS ∘ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) ∈ V ) |
36 |
32 34 35
|
syl2anc |
⊢ ( 𝜑 → ( lastS ∘ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) ∈ V ) |
37 |
|
unexg |
⊢ ( ( 𝑀 ∈ V ∧ ( lastS ∘ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) ∈ V ) → ( 𝑀 ∪ ( lastS ∘ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) ) ∈ V ) |
38 |
24 36 37
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ∪ ( lastS ∘ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) ) ∈ V ) |
39 |
6 22 24 29 38
|
ovmpod |
⊢ ( 𝜑 → ( 𝑀 seqstr 𝐹 ) = ( 𝑀 ∪ ( lastS ∘ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) ) ) |