| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							relco | 
							⊢ Rel  ( 𝐴  ∘  𝐵 )  | 
						
						
							| 2 | 
							
								
							 | 
							relssdmrn | 
							⊢ ( Rel  ( 𝐴  ∘  𝐵 )  →  ( 𝐴  ∘  𝐵 )  ⊆  ( dom  ( 𝐴  ∘  𝐵 )  ×  ran  ( 𝐴  ∘  𝐵 ) ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							ax-mp | 
							⊢ ( 𝐴  ∘  𝐵 )  ⊆  ( dom  ( 𝐴  ∘  𝐵 )  ×  ran  ( 𝐴  ∘  𝐵 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							dmcoss | 
							⊢ dom  ( 𝐴  ∘  𝐵 )  ⊆  dom  𝐵  | 
						
						
							| 5 | 
							
								
							 | 
							dmexg | 
							⊢ ( 𝐵  ∈  𝐶  →  dom  𝐵  ∈  V )  | 
						
						
							| 6 | 
							
								
							 | 
							ssexg | 
							⊢ ( ( dom  ( 𝐴  ∘  𝐵 )  ⊆  dom  𝐵  ∧  dom  𝐵  ∈  V )  →  dom  ( 𝐴  ∘  𝐵 )  ∈  V )  | 
						
						
							| 7 | 
							
								4 5 6
							 | 
							sylancr | 
							⊢ ( 𝐵  ∈  𝐶  →  dom  ( 𝐴  ∘  𝐵 )  ∈  V )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantl | 
							⊢ ( ( Fun  𝐴  ∧  𝐵  ∈  𝐶 )  →  dom  ( 𝐴  ∘  𝐵 )  ∈  V )  | 
						
						
							| 9 | 
							
								
							 | 
							rnco | 
							⊢ ran  ( 𝐴  ∘  𝐵 )  =  ran  ( 𝐴  ↾  ran  𝐵 )  | 
						
						
							| 10 | 
							
								
							 | 
							rnexg | 
							⊢ ( 𝐵  ∈  𝐶  →  ran  𝐵  ∈  V )  | 
						
						
							| 11 | 
							
								
							 | 
							resfunexg | 
							⊢ ( ( Fun  𝐴  ∧  ran  𝐵  ∈  V )  →  ( 𝐴  ↾  ran  𝐵 )  ∈  V )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							sylan2 | 
							⊢ ( ( Fun  𝐴  ∧  𝐵  ∈  𝐶 )  →  ( 𝐴  ↾  ran  𝐵 )  ∈  V )  | 
						
						
							| 13 | 
							
								
							 | 
							rnexg | 
							⊢ ( ( 𝐴  ↾  ran  𝐵 )  ∈  V  →  ran  ( 𝐴  ↾  ran  𝐵 )  ∈  V )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							syl | 
							⊢ ( ( Fun  𝐴  ∧  𝐵  ∈  𝐶 )  →  ran  ( 𝐴  ↾  ran  𝐵 )  ∈  V )  | 
						
						
							| 15 | 
							
								9 14
							 | 
							eqeltrid | 
							⊢ ( ( Fun  𝐴  ∧  𝐵  ∈  𝐶 )  →  ran  ( 𝐴  ∘  𝐵 )  ∈  V )  | 
						
						
							| 16 | 
							
								8 15
							 | 
							xpexd | 
							⊢ ( ( Fun  𝐴  ∧  𝐵  ∈  𝐶 )  →  ( dom  ( 𝐴  ∘  𝐵 )  ×  ran  ( 𝐴  ∘  𝐵 ) )  ∈  V )  | 
						
						
							| 17 | 
							
								
							 | 
							ssexg | 
							⊢ ( ( ( 𝐴  ∘  𝐵 )  ⊆  ( dom  ( 𝐴  ∘  𝐵 )  ×  ran  ( 𝐴  ∘  𝐵 ) )  ∧  ( dom  ( 𝐴  ∘  𝐵 )  ×  ran  ( 𝐴  ∘  𝐵 ) )  ∈  V )  →  ( 𝐴  ∘  𝐵 )  ∈  V )  | 
						
						
							| 18 | 
							
								3 16 17
							 | 
							sylancr | 
							⊢ ( ( Fun  𝐴  ∧  𝐵  ∈  𝐶 )  →  ( 𝐴  ∘  𝐵 )  ∈  V )  |