Step |
Hyp |
Ref |
Expression |
1 |
|
sseqval.1 |
|- ( ph -> S e. _V ) |
2 |
|
sseqval.2 |
|- ( ph -> M e. Word S ) |
3 |
|
sseqval.3 |
|- W = ( Word S i^i ( `' # " ( ZZ>= ` ( # ` M ) ) ) ) |
4 |
|
sseqval.4 |
|- ( ph -> F : W --> S ) |
5 |
|
df-sseq |
|- seqstr = ( m e. _V , f e. _V |-> ( m u. ( lastS o. seq ( # ` m ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( f ` x ) "> ) ) , ( NN0 X. { ( m ++ <" ( f ` m ) "> ) } ) ) ) ) ) |
6 |
5
|
a1i |
|- ( ph -> seqstr = ( m e. _V , f e. _V |-> ( m u. ( lastS o. seq ( # ` m ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( f ` x ) "> ) ) , ( NN0 X. { ( m ++ <" ( f ` m ) "> ) } ) ) ) ) ) ) |
7 |
|
simprl |
|- ( ( ph /\ ( m = M /\ f = F ) ) -> m = M ) |
8 |
7
|
fveq2d |
|- ( ( ph /\ ( m = M /\ f = F ) ) -> ( # ` m ) = ( # ` M ) ) |
9 |
|
simp1rr |
|- ( ( ( ph /\ ( m = M /\ f = F ) ) /\ x e. _V /\ y e. _V ) -> f = F ) |
10 |
9
|
fveq1d |
|- ( ( ( ph /\ ( m = M /\ f = F ) ) /\ x e. _V /\ y e. _V ) -> ( f ` x ) = ( F ` x ) ) |
11 |
10
|
s1eqd |
|- ( ( ( ph /\ ( m = M /\ f = F ) ) /\ x e. _V /\ y e. _V ) -> <" ( f ` x ) "> = <" ( F ` x ) "> ) |
12 |
11
|
oveq2d |
|- ( ( ( ph /\ ( m = M /\ f = F ) ) /\ x e. _V /\ y e. _V ) -> ( x ++ <" ( f ` x ) "> ) = ( x ++ <" ( F ` x ) "> ) ) |
13 |
12
|
mpoeq3dva |
|- ( ( ph /\ ( m = M /\ f = F ) ) -> ( x e. _V , y e. _V |-> ( x ++ <" ( f ` x ) "> ) ) = ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) ) |
14 |
|
simprr |
|- ( ( ph /\ ( m = M /\ f = F ) ) -> f = F ) |
15 |
14 7
|
fveq12d |
|- ( ( ph /\ ( m = M /\ f = F ) ) -> ( f ` m ) = ( F ` M ) ) |
16 |
15
|
s1eqd |
|- ( ( ph /\ ( m = M /\ f = F ) ) -> <" ( f ` m ) "> = <" ( F ` M ) "> ) |
17 |
7 16
|
oveq12d |
|- ( ( ph /\ ( m = M /\ f = F ) ) -> ( m ++ <" ( f ` m ) "> ) = ( M ++ <" ( F ` M ) "> ) ) |
18 |
17
|
sneqd |
|- ( ( ph /\ ( m = M /\ f = F ) ) -> { ( m ++ <" ( f ` m ) "> ) } = { ( M ++ <" ( F ` M ) "> ) } ) |
19 |
18
|
xpeq2d |
|- ( ( ph /\ ( m = M /\ f = F ) ) -> ( NN0 X. { ( m ++ <" ( f ` m ) "> ) } ) = ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) |
20 |
8 13 19
|
seqeq123d |
|- ( ( ph /\ ( m = M /\ f = F ) ) -> seq ( # ` m ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( f ` x ) "> ) ) , ( NN0 X. { ( m ++ <" ( f ` m ) "> ) } ) ) = seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) |
21 |
20
|
coeq2d |
|- ( ( ph /\ ( m = M /\ f = F ) ) -> ( lastS o. seq ( # ` m ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( f ` x ) "> ) ) , ( NN0 X. { ( m ++ <" ( f ` m ) "> ) } ) ) ) = ( lastS o. seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) ) |
22 |
7 21
|
uneq12d |
|- ( ( ph /\ ( m = M /\ f = F ) ) -> ( m u. ( lastS o. seq ( # ` m ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( f ` x ) "> ) ) , ( NN0 X. { ( m ++ <" ( f ` m ) "> ) } ) ) ) ) = ( M u. ( lastS o. seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) ) ) |
23 |
|
elex |
|- ( M e. Word S -> M e. _V ) |
24 |
2 23
|
syl |
|- ( ph -> M e. _V ) |
25 |
|
wrdexg |
|- ( S e. _V -> Word S e. _V ) |
26 |
|
inex1g |
|- ( Word S e. _V -> ( Word S i^i ( `' # " ( ZZ>= ` ( # ` M ) ) ) ) e. _V ) |
27 |
1 25 26
|
3syl |
|- ( ph -> ( Word S i^i ( `' # " ( ZZ>= ` ( # ` M ) ) ) ) e. _V ) |
28 |
3 27
|
eqeltrid |
|- ( ph -> W e. _V ) |
29 |
4 28
|
fexd |
|- ( ph -> F e. _V ) |
30 |
|
df-lsw |
|- lastS = ( x e. _V |-> ( x ` ( ( # ` x ) - 1 ) ) ) |
31 |
30
|
funmpt2 |
|- Fun lastS |
32 |
31
|
a1i |
|- ( ph -> Fun lastS ) |
33 |
|
seqex |
|- seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) e. _V |
34 |
33
|
a1i |
|- ( ph -> seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) e. _V ) |
35 |
|
cofunexg |
|- ( ( Fun lastS /\ seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) e. _V ) -> ( lastS o. seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) e. _V ) |
36 |
32 34 35
|
syl2anc |
|- ( ph -> ( lastS o. seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) e. _V ) |
37 |
|
unexg |
|- ( ( M e. _V /\ ( lastS o. seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) e. _V ) -> ( M u. ( lastS o. seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) ) e. _V ) |
38 |
24 36 37
|
syl2anc |
|- ( ph -> ( M u. ( lastS o. seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) ) e. _V ) |
39 |
6 22 24 29 38
|
ovmpod |
|- ( ph -> ( M seqstr F ) = ( M u. ( lastS o. seq ( # ` M ) ( ( x e. _V , y e. _V |-> ( x ++ <" ( F ` x ) "> ) ) , ( NN0 X. { ( M ++ <" ( F ` M ) "> ) } ) ) ) ) ) |