Metamath Proof Explorer


Theorem sseqfv2

Description: Value of the strong sequence builder function. (Contributed by Thierry Arnoux, 21-Apr-2019)

Ref Expression
Hypotheses sseqval.1 φ S V
sseqval.2 φ M Word S
sseqval.3 W = Word S . -1 M
sseqval.4 φ F : W S
sseqfv2.4 φ N M
Assertion sseqfv2 φ M seq str F N = lastS seq M x V , y V x ++ ⟨“ F x ”⟩ 0 × M ++ ⟨“ F M ”⟩ N

Proof

Step Hyp Ref Expression
1 sseqval.1 φ S V
2 sseqval.2 φ M Word S
3 sseqval.3 W = Word S . -1 M
4 sseqval.4 φ F : W S
5 sseqfv2.4 φ N M
6 1 2 3 4 sseqval φ M seq str F = M lastS seq M x V , y V x ++ ⟨“ F x ”⟩ 0 × M ++ ⟨“ F M ”⟩
7 6 fveq1d φ M seq str F N = M lastS seq M x V , y V x ++ ⟨“ F x ”⟩ 0 × M ++ ⟨“ F M ”⟩ N
8 wrdfn M Word S M Fn 0 ..^ M
9 2 8 syl φ M Fn 0 ..^ M
10 fvex x x 1 V
11 df-lsw lastS = x V x x 1
12 10 11 fnmpti lastS Fn V
13 12 a1i φ lastS Fn V
14 lencl M Word S M 0
15 2 14 syl φ M 0
16 15 nn0zd φ M
17 seqfn M seq M x V , y V x ++ ⟨“ F x ”⟩ 0 × M ++ ⟨“ F M ”⟩ Fn M
18 16 17 syl φ seq M x V , y V x ++ ⟨“ F x ”⟩ 0 × M ++ ⟨“ F M ”⟩ Fn M
19 ssv ran seq M x V , y V x ++ ⟨“ F x ”⟩ 0 × M ++ ⟨“ F M ”⟩ V
20 19 a1i φ ran seq M x V , y V x ++ ⟨“ F x ”⟩ 0 × M ++ ⟨“ F M ”⟩ V
21 fnco lastS Fn V seq M x V , y V x ++ ⟨“ F x ”⟩ 0 × M ++ ⟨“ F M ”⟩ Fn M ran seq M x V , y V x ++ ⟨“ F x ”⟩ 0 × M ++ ⟨“ F M ”⟩ V lastS seq M x V , y V x ++ ⟨“ F x ”⟩ 0 × M ++ ⟨“ F M ”⟩ Fn M
22 13 18 20 21 syl3anc φ lastS seq M x V , y V x ++ ⟨“ F x ”⟩ 0 × M ++ ⟨“ F M ”⟩ Fn M
23 fzouzdisj 0 ..^ M M =
24 23 a1i φ 0 ..^ M M =
25 fvun2 M Fn 0 ..^ M lastS seq M x V , y V x ++ ⟨“ F x ”⟩ 0 × M ++ ⟨“ F M ”⟩ Fn M 0 ..^ M M = N M M lastS seq M x V , y V x ++ ⟨“ F x ”⟩ 0 × M ++ ⟨“ F M ”⟩ N = lastS seq M x V , y V x ++ ⟨“ F x ”⟩ 0 × M ++ ⟨“ F M ”⟩ N
26 9 22 24 5 25 syl112anc φ M lastS seq M x V , y V x ++ ⟨“ F x ”⟩ 0 × M ++ ⟨“ F M ”⟩ N = lastS seq M x V , y V x ++ ⟨“ F x ”⟩ 0 × M ++ ⟨“ F M ”⟩ N
27 fnfun seq M x V , y V x ++ ⟨“ F x ”⟩ 0 × M ++ ⟨“ F M ”⟩ Fn M Fun seq M x V , y V x ++ ⟨“ F x ”⟩ 0 × M ++ ⟨“ F M ”⟩
28 18 27 syl φ Fun seq M x V , y V x ++ ⟨“ F x ”⟩ 0 × M ++ ⟨“ F M ”⟩
29 fvexd φ 0 × M ++ ⟨“ F M ”⟩ M V
30 ovexd φ a V b V a x V , y V x ++ ⟨“ F x ”⟩ b V
31 eqid M = M
32 fvexd φ a M + 1 0 × M ++ ⟨“ F M ”⟩ a V
33 29 30 31 16 32 seqf2 φ seq M x V , y V x ++ ⟨“ F x ”⟩ 0 × M ++ ⟨“ F M ”⟩ : M V
34 33 fdmd φ dom seq M x V , y V x ++ ⟨“ F x ”⟩ 0 × M ++ ⟨“ F M ”⟩ = M
35 5 34 eleqtrrd φ N dom seq M x V , y V x ++ ⟨“ F x ”⟩ 0 × M ++ ⟨“ F M ”⟩
36 fvco Fun seq M x V , y V x ++ ⟨“ F x ”⟩ 0 × M ++ ⟨“ F M ”⟩ N dom seq M x V , y V x ++ ⟨“ F x ”⟩ 0 × M ++ ⟨“ F M ”⟩ lastS seq M x V , y V x ++ ⟨“ F x ”⟩ 0 × M ++ ⟨“ F M ”⟩ N = lastS seq M x V , y V x ++ ⟨“ F x ”⟩ 0 × M ++ ⟨“ F M ”⟩ N
37 28 35 36 syl2anc φ lastS seq M x V , y V x ++ ⟨“ F x ”⟩ 0 × M ++ ⟨“ F M ”⟩ N = lastS seq M x V , y V x ++ ⟨“ F x ”⟩ 0 × M ++ ⟨“ F M ”⟩ N
38 7 26 37 3eqtrd φ M seq str F N = lastS seq M x V , y V x ++ ⟨“ F x ”⟩ 0 × M ++ ⟨“ F M ”⟩ N