| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sseqval.1 |  |-  ( ph -> S e. _V ) | 
						
							| 2 |  | sseqval.2 |  |-  ( ph -> M e. Word S ) | 
						
							| 3 |  | sseqval.3 |  |-  W = ( Word S i^i ( `' # " ( ZZ>= ` ( # ` M ) ) ) ) | 
						
							| 4 |  | sseqval.4 |  |-  ( ph -> F : W --> S ) | 
						
							| 5 | 1 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ ( # ` M ) ) ) -> S e. _V ) | 
						
							| 6 | 2 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ ( # ` M ) ) ) -> M e. Word S ) | 
						
							| 7 | 4 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ ( # ` M ) ) ) -> F : W --> S ) | 
						
							| 8 |  | simpr |  |-  ( ( ph /\ i e. ( 0 ..^ ( # ` M ) ) ) -> i e. ( 0 ..^ ( # ` M ) ) ) | 
						
							| 9 | 5 6 3 7 8 | sseqfv1 |  |-  ( ( ph /\ i e. ( 0 ..^ ( # ` M ) ) ) -> ( ( M seqstr F ) ` i ) = ( M ` i ) ) | 
						
							| 10 | 9 | ralrimiva |  |-  ( ph -> A. i e. ( 0 ..^ ( # ` M ) ) ( ( M seqstr F ) ` i ) = ( M ` i ) ) | 
						
							| 11 | 1 2 3 4 | sseqfn |  |-  ( ph -> ( M seqstr F ) Fn NN0 ) | 
						
							| 12 |  | wrdfn |  |-  ( M e. Word S -> M Fn ( 0 ..^ ( # ` M ) ) ) | 
						
							| 13 | 2 12 | syl |  |-  ( ph -> M Fn ( 0 ..^ ( # ` M ) ) ) | 
						
							| 14 |  | fzo0ssnn0 |  |-  ( 0 ..^ ( # ` M ) ) C_ NN0 | 
						
							| 15 | 14 | a1i |  |-  ( ph -> ( 0 ..^ ( # ` M ) ) C_ NN0 ) | 
						
							| 16 |  | fvreseq1 |  |-  ( ( ( ( M seqstr F ) Fn NN0 /\ M Fn ( 0 ..^ ( # ` M ) ) ) /\ ( 0 ..^ ( # ` M ) ) C_ NN0 ) -> ( ( ( M seqstr F ) |` ( 0 ..^ ( # ` M ) ) ) = M <-> A. i e. ( 0 ..^ ( # ` M ) ) ( ( M seqstr F ) ` i ) = ( M ` i ) ) ) | 
						
							| 17 | 11 13 15 16 | syl21anc |  |-  ( ph -> ( ( ( M seqstr F ) |` ( 0 ..^ ( # ` M ) ) ) = M <-> A. i e. ( 0 ..^ ( # ` M ) ) ( ( M seqstr F ) ` i ) = ( M ` i ) ) ) | 
						
							| 18 | 10 17 | mpbird |  |-  ( ph -> ( ( M seqstr F ) |` ( 0 ..^ ( # ` M ) ) ) = M ) |