Step |
Hyp |
Ref |
Expression |
1 |
|
sseqval.1 |
|- ( ph -> S e. _V ) |
2 |
|
sseqval.2 |
|- ( ph -> M e. Word S ) |
3 |
|
sseqval.3 |
|- W = ( Word S i^i ( `' # " ( ZZ>= ` ( # ` M ) ) ) ) |
4 |
|
sseqval.4 |
|- ( ph -> F : W --> S ) |
5 |
1
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ ( # ` M ) ) ) -> S e. _V ) |
6 |
2
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ ( # ` M ) ) ) -> M e. Word S ) |
7 |
4
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ ( # ` M ) ) ) -> F : W --> S ) |
8 |
|
simpr |
|- ( ( ph /\ i e. ( 0 ..^ ( # ` M ) ) ) -> i e. ( 0 ..^ ( # ` M ) ) ) |
9 |
5 6 3 7 8
|
sseqfv1 |
|- ( ( ph /\ i e. ( 0 ..^ ( # ` M ) ) ) -> ( ( M seqstr F ) ` i ) = ( M ` i ) ) |
10 |
9
|
ralrimiva |
|- ( ph -> A. i e. ( 0 ..^ ( # ` M ) ) ( ( M seqstr F ) ` i ) = ( M ` i ) ) |
11 |
1 2 3 4
|
sseqfn |
|- ( ph -> ( M seqstr F ) Fn NN0 ) |
12 |
|
wrdfn |
|- ( M e. Word S -> M Fn ( 0 ..^ ( # ` M ) ) ) |
13 |
2 12
|
syl |
|- ( ph -> M Fn ( 0 ..^ ( # ` M ) ) ) |
14 |
|
fzo0ssnn0 |
|- ( 0 ..^ ( # ` M ) ) C_ NN0 |
15 |
14
|
a1i |
|- ( ph -> ( 0 ..^ ( # ` M ) ) C_ NN0 ) |
16 |
|
fvreseq1 |
|- ( ( ( ( M seqstr F ) Fn NN0 /\ M Fn ( 0 ..^ ( # ` M ) ) ) /\ ( 0 ..^ ( # ` M ) ) C_ NN0 ) -> ( ( ( M seqstr F ) |` ( 0 ..^ ( # ` M ) ) ) = M <-> A. i e. ( 0 ..^ ( # ` M ) ) ( ( M seqstr F ) ` i ) = ( M ` i ) ) ) |
17 |
11 13 15 16
|
syl21anc |
|- ( ph -> ( ( ( M seqstr F ) |` ( 0 ..^ ( # ` M ) ) ) = M <-> A. i e. ( 0 ..^ ( # ` M ) ) ( ( M seqstr F ) ` i ) = ( M ` i ) ) ) |
18 |
10 17
|
mpbird |
|- ( ph -> ( ( M seqstr F ) |` ( 0 ..^ ( # ` M ) ) ) = M ) |