Metamath Proof Explorer


Theorem sseqfres

Description: The first elements in the strong recursive sequence are the sequence initializer. (Contributed by Thierry Arnoux, 23-Apr-2019)

Ref Expression
Hypotheses sseqval.1 φ S V
sseqval.2 φ M Word S
sseqval.3 W = Word S . -1 M
sseqval.4 φ F : W S
Assertion sseqfres φ M seq str F 0 ..^ M = M

Proof

Step Hyp Ref Expression
1 sseqval.1 φ S V
2 sseqval.2 φ M Word S
3 sseqval.3 W = Word S . -1 M
4 sseqval.4 φ F : W S
5 1 adantr φ i 0 ..^ M S V
6 2 adantr φ i 0 ..^ M M Word S
7 4 adantr φ i 0 ..^ M F : W S
8 simpr φ i 0 ..^ M i 0 ..^ M
9 5 6 3 7 8 sseqfv1 φ i 0 ..^ M M seq str F i = M i
10 9 ralrimiva φ i 0 ..^ M M seq str F i = M i
11 1 2 3 4 sseqfn φ M seq str F Fn 0
12 wrdfn M Word S M Fn 0 ..^ M
13 2 12 syl φ M Fn 0 ..^ M
14 fzo0ssnn0 0 ..^ M 0
15 14 a1i φ 0 ..^ M 0
16 fvreseq1 M seq str F Fn 0 M Fn 0 ..^ M 0 ..^ M 0 M seq str F 0 ..^ M = M i 0 ..^ M M seq str F i = M i
17 11 13 15 16 syl21anc φ M seq str F 0 ..^ M = M i 0 ..^ M M seq str F i = M i
18 10 17 mpbird φ M seq str F 0 ..^ M = M