Step |
Hyp |
Ref |
Expression |
1 |
|
sseqval.1 |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
2 |
|
sseqval.2 |
⊢ ( 𝜑 → 𝑀 ∈ Word 𝑆 ) |
3 |
|
sseqval.3 |
⊢ 𝑊 = ( Word 𝑆 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) |
4 |
|
sseqval.4 |
⊢ ( 𝜑 → 𝐹 : 𝑊 ⟶ 𝑆 ) |
5 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ) → 𝑆 ∈ V ) |
6 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ) → 𝑀 ∈ Word 𝑆 ) |
7 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ) → 𝐹 : 𝑊 ⟶ 𝑆 ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ) |
9 |
5 6 3 7 8
|
sseqfv1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ) → ( ( 𝑀 seqstr 𝐹 ) ‘ 𝑖 ) = ( 𝑀 ‘ 𝑖 ) ) |
10 |
9
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ( ( 𝑀 seqstr 𝐹 ) ‘ 𝑖 ) = ( 𝑀 ‘ 𝑖 ) ) |
11 |
1 2 3 4
|
sseqfn |
⊢ ( 𝜑 → ( 𝑀 seqstr 𝐹 ) Fn ℕ0 ) |
12 |
|
wrdfn |
⊢ ( 𝑀 ∈ Word 𝑆 → 𝑀 Fn ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ) |
13 |
2 12
|
syl |
⊢ ( 𝜑 → 𝑀 Fn ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ) |
14 |
|
fzo0ssnn0 |
⊢ ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ⊆ ℕ0 |
15 |
14
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ⊆ ℕ0 ) |
16 |
|
fvreseq1 |
⊢ ( ( ( ( 𝑀 seqstr 𝐹 ) Fn ℕ0 ∧ 𝑀 Fn ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ) ∧ ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ⊆ ℕ0 ) → ( ( ( 𝑀 seqstr 𝐹 ) ↾ ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ) = 𝑀 ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ( ( 𝑀 seqstr 𝐹 ) ‘ 𝑖 ) = ( 𝑀 ‘ 𝑖 ) ) ) |
17 |
11 13 15 16
|
syl21anc |
⊢ ( 𝜑 → ( ( ( 𝑀 seqstr 𝐹 ) ↾ ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ) = 𝑀 ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ( ( 𝑀 seqstr 𝐹 ) ‘ 𝑖 ) = ( 𝑀 ‘ 𝑖 ) ) ) |
18 |
10 17
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑀 seqstr 𝐹 ) ↾ ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ) = 𝑀 ) |