| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sseqval.1 | ⊢ ( 𝜑  →  𝑆  ∈  V ) | 
						
							| 2 |  | sseqval.2 | ⊢ ( 𝜑  →  𝑀  ∈  Word  𝑆 ) | 
						
							| 3 |  | sseqval.3 | ⊢ 𝑊  =  ( Word  𝑆  ∩  ( ◡ ♯  “  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) | 
						
							| 4 |  | sseqval.4 | ⊢ ( 𝜑  →  𝐹 : 𝑊 ⟶ 𝑆 ) | 
						
							| 5 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑀 ) ) )  →  𝑆  ∈  V ) | 
						
							| 6 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑀 ) ) )  →  𝑀  ∈  Word  𝑆 ) | 
						
							| 7 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑀 ) ) )  →  𝐹 : 𝑊 ⟶ 𝑆 ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑀 ) ) )  →  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ) | 
						
							| 9 | 5 6 3 7 8 | sseqfv1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑀 ) ) )  →  ( ( 𝑀 seqstr 𝐹 ) ‘ 𝑖 )  =  ( 𝑀 ‘ 𝑖 ) ) | 
						
							| 10 | 9 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ( ( 𝑀 seqstr 𝐹 ) ‘ 𝑖 )  =  ( 𝑀 ‘ 𝑖 ) ) | 
						
							| 11 | 1 2 3 4 | sseqfn | ⊢ ( 𝜑  →  ( 𝑀 seqstr 𝐹 )  Fn  ℕ0 ) | 
						
							| 12 |  | wrdfn | ⊢ ( 𝑀  ∈  Word  𝑆  →  𝑀  Fn  ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ) | 
						
							| 13 | 2 12 | syl | ⊢ ( 𝜑  →  𝑀  Fn  ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ) | 
						
							| 14 |  | fzo0ssnn0 | ⊢ ( 0 ..^ ( ♯ ‘ 𝑀 ) )  ⊆  ℕ0 | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  ( 0 ..^ ( ♯ ‘ 𝑀 ) )  ⊆  ℕ0 ) | 
						
							| 16 |  | fvreseq1 | ⊢ ( ( ( ( 𝑀 seqstr 𝐹 )  Fn  ℕ0  ∧  𝑀  Fn  ( 0 ..^ ( ♯ ‘ 𝑀 ) ) )  ∧  ( 0 ..^ ( ♯ ‘ 𝑀 ) )  ⊆  ℕ0 )  →  ( ( ( 𝑀 seqstr 𝐹 )  ↾  ( 0 ..^ ( ♯ ‘ 𝑀 ) ) )  =  𝑀  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ( ( 𝑀 seqstr 𝐹 ) ‘ 𝑖 )  =  ( 𝑀 ‘ 𝑖 ) ) ) | 
						
							| 17 | 11 13 15 16 | syl21anc | ⊢ ( 𝜑  →  ( ( ( 𝑀 seqstr 𝐹 )  ↾  ( 0 ..^ ( ♯ ‘ 𝑀 ) ) )  =  𝑀  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ( ( 𝑀 seqstr 𝐹 ) ‘ 𝑖 )  =  ( 𝑀 ‘ 𝑖 ) ) ) | 
						
							| 18 | 10 17 | mpbird | ⊢ ( 𝜑  →  ( ( 𝑀 seqstr 𝐹 )  ↾  ( 0 ..^ ( ♯ ‘ 𝑀 ) ) )  =  𝑀 ) |