| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sseqval.1 | ⊢ ( 𝜑  →  𝑆  ∈  V ) | 
						
							| 2 |  | sseqval.2 | ⊢ ( 𝜑  →  𝑀  ∈  Word  𝑆 ) | 
						
							| 3 |  | sseqval.3 | ⊢ 𝑊  =  ( Word  𝑆  ∩  ( ◡ ♯  “  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) | 
						
							| 4 |  | sseqval.4 | ⊢ ( 𝜑  →  𝐹 : 𝑊 ⟶ 𝑆 ) | 
						
							| 5 |  | wrdfn | ⊢ ( 𝑀  ∈  Word  𝑆  →  𝑀  Fn  ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ) | 
						
							| 6 | 2 5 | syl | ⊢ ( 𝜑  →  𝑀  Fn  ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ) | 
						
							| 7 |  | fvex | ⊢ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 )  −  1 ) )  ∈  V | 
						
							| 8 |  | df-lsw | ⊢ lastS  =  ( 𝑥  ∈  V  ↦  ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 )  −  1 ) ) ) | 
						
							| 9 | 7 8 | fnmpti | ⊢ lastS  Fn  V | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  lastS  Fn  V ) | 
						
							| 11 |  | lencl | ⊢ ( 𝑀  ∈  Word  𝑆  →  ( ♯ ‘ 𝑀 )  ∈  ℕ0 ) | 
						
							| 12 | 11 | nn0zd | ⊢ ( 𝑀  ∈  Word  𝑆  →  ( ♯ ‘ 𝑀 )  ∈  ℤ ) | 
						
							| 13 |  | seqfn | ⊢ ( ( ♯ ‘ 𝑀 )  ∈  ℤ  →  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) )  Fn  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) | 
						
							| 14 | 2 12 13 | 3syl | ⊢ ( 𝜑  →  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) )  Fn  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) | 
						
							| 15 |  | ssv | ⊢ ran  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) )  ⊆  V | 
						
							| 16 | 15 | a1i | ⊢ ( 𝜑  →  ran  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) )  ⊆  V ) | 
						
							| 17 |  | fnco | ⊢ ( ( lastS  Fn  V  ∧  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) )  Fn  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) )  ∧  ran  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) )  ⊆  V )  →  ( lastS  ∘  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) )  Fn  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) | 
						
							| 18 | 10 14 16 17 | syl3anc | ⊢ ( 𝜑  →  ( lastS  ∘  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) )  Fn  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) | 
						
							| 19 |  | fzouzdisj | ⊢ ( ( 0 ..^ ( ♯ ‘ 𝑀 ) )  ∩  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) )  =  ∅ | 
						
							| 20 | 19 | a1i | ⊢ ( 𝜑  →  ( ( 0 ..^ ( ♯ ‘ 𝑀 ) )  ∩  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) )  =  ∅ ) | 
						
							| 21 | 6 18 20 | fnund | ⊢ ( 𝜑  →  ( 𝑀  ∪  ( lastS  ∘  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) )  Fn  ( ( 0 ..^ ( ♯ ‘ 𝑀 ) )  ∪  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) | 
						
							| 22 | 1 2 3 4 | sseqval | ⊢ ( 𝜑  →  ( 𝑀 seqstr 𝐹 )  =  ( 𝑀  ∪  ( lastS  ∘  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) ) ) | 
						
							| 23 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 24 |  | elnn0uz | ⊢ ( ( ♯ ‘ 𝑀 )  ∈  ℕ0  ↔  ( ♯ ‘ 𝑀 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 25 |  | fzouzsplit | ⊢ ( ( ♯ ‘ 𝑀 )  ∈  ( ℤ≥ ‘ 0 )  →  ( ℤ≥ ‘ 0 )  =  ( ( 0 ..^ ( ♯ ‘ 𝑀 ) )  ∪  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) | 
						
							| 26 | 24 25 | sylbi | ⊢ ( ( ♯ ‘ 𝑀 )  ∈  ℕ0  →  ( ℤ≥ ‘ 0 )  =  ( ( 0 ..^ ( ♯ ‘ 𝑀 ) )  ∪  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) | 
						
							| 27 | 2 11 26 | 3syl | ⊢ ( 𝜑  →  ( ℤ≥ ‘ 0 )  =  ( ( 0 ..^ ( ♯ ‘ 𝑀 ) )  ∪  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) | 
						
							| 28 | 23 27 | eqtrid | ⊢ ( 𝜑  →  ℕ0  =  ( ( 0 ..^ ( ♯ ‘ 𝑀 ) )  ∪  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) | 
						
							| 29 | 22 28 | fneq12d | ⊢ ( 𝜑  →  ( ( 𝑀 seqstr 𝐹 )  Fn  ℕ0  ↔  ( 𝑀  ∪  ( lastS  ∘  seq ( ♯ ‘ 𝑀 ) ( ( 𝑥  ∈  V ,  𝑦  ∈  V  ↦  ( 𝑥  ++  〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ,  ( ℕ0  ×  { ( 𝑀  ++  〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) )  Fn  ( ( 0 ..^ ( ♯ ‘ 𝑀 ) )  ∪  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) ) | 
						
							| 30 | 21 29 | mpbird | ⊢ ( 𝜑  →  ( 𝑀 seqstr 𝐹 )  Fn  ℕ0 ) |