Metamath Proof Explorer


Theorem sseqfn

Description: A strong recursive sequence is a function over the nonnegative integers. (Contributed by Thierry Arnoux, 23-Apr-2019)

Ref Expression
Hypotheses sseqval.1 ( 𝜑𝑆 ∈ V )
sseqval.2 ( 𝜑𝑀 ∈ Word 𝑆 )
sseqval.3 𝑊 = ( Word 𝑆 ∩ ( ♯ “ ( ℤ ‘ ( ♯ ‘ 𝑀 ) ) ) )
sseqval.4 ( 𝜑𝐹 : 𝑊𝑆 )
Assertion sseqfn ( 𝜑 → ( 𝑀 seqstr 𝐹 ) Fn ℕ0 )

Proof

Step Hyp Ref Expression
1 sseqval.1 ( 𝜑𝑆 ∈ V )
2 sseqval.2 ( 𝜑𝑀 ∈ Word 𝑆 )
3 sseqval.3 𝑊 = ( Word 𝑆 ∩ ( ♯ “ ( ℤ ‘ ( ♯ ‘ 𝑀 ) ) ) )
4 sseqval.4 ( 𝜑𝐹 : 𝑊𝑆 )
5 wrdfn ( 𝑀 ∈ Word 𝑆𝑀 Fn ( 0 ..^ ( ♯ ‘ 𝑀 ) ) )
6 2 5 syl ( 𝜑𝑀 Fn ( 0 ..^ ( ♯ ‘ 𝑀 ) ) )
7 fvex ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ∈ V
8 df-lsw lastS = ( 𝑥 ∈ V ↦ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) )
9 7 8 fnmpti lastS Fn V
10 9 a1i ( 𝜑 → lastS Fn V )
11 lencl ( 𝑀 ∈ Word 𝑆 → ( ♯ ‘ 𝑀 ) ∈ ℕ0 )
12 11 nn0zd ( 𝑀 ∈ Word 𝑆 → ( ♯ ‘ 𝑀 ) ∈ ℤ )
13 seqfn ( ( ♯ ‘ 𝑀 ) ∈ ℤ → seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ ⟨“ ( 𝐹𝑥 ) ”⟩ ) ) , ( ℕ0 × { ( 𝑀 ++ ⟨“ ( 𝐹𝑀 ) ”⟩ ) } ) ) Fn ( ℤ ‘ ( ♯ ‘ 𝑀 ) ) )
14 2 12 13 3syl ( 𝜑 → seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ ⟨“ ( 𝐹𝑥 ) ”⟩ ) ) , ( ℕ0 × { ( 𝑀 ++ ⟨“ ( 𝐹𝑀 ) ”⟩ ) } ) ) Fn ( ℤ ‘ ( ♯ ‘ 𝑀 ) ) )
15 ssv ran seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ ⟨“ ( 𝐹𝑥 ) ”⟩ ) ) , ( ℕ0 × { ( 𝑀 ++ ⟨“ ( 𝐹𝑀 ) ”⟩ ) } ) ) ⊆ V
16 15 a1i ( 𝜑 → ran seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ ⟨“ ( 𝐹𝑥 ) ”⟩ ) ) , ( ℕ0 × { ( 𝑀 ++ ⟨“ ( 𝐹𝑀 ) ”⟩ ) } ) ) ⊆ V )
17 fnco ( ( lastS Fn V ∧ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ ⟨“ ( 𝐹𝑥 ) ”⟩ ) ) , ( ℕ0 × { ( 𝑀 ++ ⟨“ ( 𝐹𝑀 ) ”⟩ ) } ) ) Fn ( ℤ ‘ ( ♯ ‘ 𝑀 ) ) ∧ ran seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ ⟨“ ( 𝐹𝑥 ) ”⟩ ) ) , ( ℕ0 × { ( 𝑀 ++ ⟨“ ( 𝐹𝑀 ) ”⟩ ) } ) ) ⊆ V ) → ( lastS ∘ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ ⟨“ ( 𝐹𝑥 ) ”⟩ ) ) , ( ℕ0 × { ( 𝑀 ++ ⟨“ ( 𝐹𝑀 ) ”⟩ ) } ) ) ) Fn ( ℤ ‘ ( ♯ ‘ 𝑀 ) ) )
18 10 14 16 17 syl3anc ( 𝜑 → ( lastS ∘ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ ⟨“ ( 𝐹𝑥 ) ”⟩ ) ) , ( ℕ0 × { ( 𝑀 ++ ⟨“ ( 𝐹𝑀 ) ”⟩ ) } ) ) ) Fn ( ℤ ‘ ( ♯ ‘ 𝑀 ) ) )
19 fzouzdisj ( ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ∩ ( ℤ ‘ ( ♯ ‘ 𝑀 ) ) ) = ∅
20 19 a1i ( 𝜑 → ( ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ∩ ( ℤ ‘ ( ♯ ‘ 𝑀 ) ) ) = ∅ )
21 6 18 20 fnund ( 𝜑 → ( 𝑀 ∪ ( lastS ∘ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ ⟨“ ( 𝐹𝑥 ) ”⟩ ) ) , ( ℕ0 × { ( 𝑀 ++ ⟨“ ( 𝐹𝑀 ) ”⟩ ) } ) ) ) ) Fn ( ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ∪ ( ℤ ‘ ( ♯ ‘ 𝑀 ) ) ) )
22 1 2 3 4 sseqval ( 𝜑 → ( 𝑀 seqstr 𝐹 ) = ( 𝑀 ∪ ( lastS ∘ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ ⟨“ ( 𝐹𝑥 ) ”⟩ ) ) , ( ℕ0 × { ( 𝑀 ++ ⟨“ ( 𝐹𝑀 ) ”⟩ ) } ) ) ) ) )
23 nn0uz 0 = ( ℤ ‘ 0 )
24 elnn0uz ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝑀 ) ∈ ( ℤ ‘ 0 ) )
25 fzouzsplit ( ( ♯ ‘ 𝑀 ) ∈ ( ℤ ‘ 0 ) → ( ℤ ‘ 0 ) = ( ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ∪ ( ℤ ‘ ( ♯ ‘ 𝑀 ) ) ) )
26 24 25 sylbi ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 → ( ℤ ‘ 0 ) = ( ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ∪ ( ℤ ‘ ( ♯ ‘ 𝑀 ) ) ) )
27 2 11 26 3syl ( 𝜑 → ( ℤ ‘ 0 ) = ( ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ∪ ( ℤ ‘ ( ♯ ‘ 𝑀 ) ) ) )
28 23 27 eqtrid ( 𝜑 → ℕ0 = ( ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ∪ ( ℤ ‘ ( ♯ ‘ 𝑀 ) ) ) )
29 22 28 fneq12d ( 𝜑 → ( ( 𝑀 seqstr 𝐹 ) Fn ℕ0 ↔ ( 𝑀 ∪ ( lastS ∘ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ ⟨“ ( 𝐹𝑥 ) ”⟩ ) ) , ( ℕ0 × { ( 𝑀 ++ ⟨“ ( 𝐹𝑀 ) ”⟩ ) } ) ) ) ) Fn ( ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ∪ ( ℤ ‘ ( ♯ ‘ 𝑀 ) ) ) ) )
30 21 29 mpbird ( 𝜑 → ( 𝑀 seqstr 𝐹 ) Fn ℕ0 )