Step |
Hyp |
Ref |
Expression |
1 |
|
sseqval.1 |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
2 |
|
sseqval.2 |
⊢ ( 𝜑 → 𝑀 ∈ Word 𝑆 ) |
3 |
|
sseqval.3 |
⊢ 𝑊 = ( Word 𝑆 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) |
4 |
|
sseqval.4 |
⊢ ( 𝜑 → 𝐹 : 𝑊 ⟶ 𝑆 ) |
5 |
|
wrdfn |
⊢ ( 𝑀 ∈ Word 𝑆 → 𝑀 Fn ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ) |
6 |
2 5
|
syl |
⊢ ( 𝜑 → 𝑀 Fn ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ) |
7 |
|
fvex |
⊢ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ∈ V |
8 |
|
df-lsw |
⊢ lastS = ( 𝑥 ∈ V ↦ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ) |
9 |
7 8
|
fnmpti |
⊢ lastS Fn V |
10 |
9
|
a1i |
⊢ ( 𝜑 → lastS Fn V ) |
11 |
|
lencl |
⊢ ( 𝑀 ∈ Word 𝑆 → ( ♯ ‘ 𝑀 ) ∈ ℕ0 ) |
12 |
11
|
nn0zd |
⊢ ( 𝑀 ∈ Word 𝑆 → ( ♯ ‘ 𝑀 ) ∈ ℤ ) |
13 |
|
seqfn |
⊢ ( ( ♯ ‘ 𝑀 ) ∈ ℤ → seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) Fn ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) |
14 |
2 12 13
|
3syl |
⊢ ( 𝜑 → seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) Fn ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) |
15 |
|
ssv |
⊢ ran seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ⊆ V |
16 |
15
|
a1i |
⊢ ( 𝜑 → ran seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ⊆ V ) |
17 |
|
fnco |
⊢ ( ( lastS Fn V ∧ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) Fn ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ∧ ran seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ⊆ V ) → ( lastS ∘ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) Fn ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) |
18 |
10 14 16 17
|
syl3anc |
⊢ ( 𝜑 → ( lastS ∘ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) Fn ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) |
19 |
|
fzouzdisj |
⊢ ( ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ∩ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) = ∅ |
20 |
19
|
a1i |
⊢ ( 𝜑 → ( ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ∩ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) = ∅ ) |
21 |
6 18 20
|
fnund |
⊢ ( 𝜑 → ( 𝑀 ∪ ( lastS ∘ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) ) Fn ( ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ∪ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) |
22 |
1 2 3 4
|
sseqval |
⊢ ( 𝜑 → ( 𝑀 seqstr 𝐹 ) = ( 𝑀 ∪ ( lastS ∘ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) ) ) |
23 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
24 |
|
elnn0uz |
⊢ ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝑀 ) ∈ ( ℤ≥ ‘ 0 ) ) |
25 |
|
fzouzsplit |
⊢ ( ( ♯ ‘ 𝑀 ) ∈ ( ℤ≥ ‘ 0 ) → ( ℤ≥ ‘ 0 ) = ( ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ∪ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) |
26 |
24 25
|
sylbi |
⊢ ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 → ( ℤ≥ ‘ 0 ) = ( ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ∪ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) |
27 |
2 11 26
|
3syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ 0 ) = ( ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ∪ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) |
28 |
23 27
|
eqtrid |
⊢ ( 𝜑 → ℕ0 = ( ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ∪ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) |
29 |
22 28
|
fneq12d |
⊢ ( 𝜑 → ( ( 𝑀 seqstr 𝐹 ) Fn ℕ0 ↔ ( 𝑀 ∪ ( lastS ∘ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) ) Fn ( ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ∪ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) ) |
30 |
21 29
|
mpbird |
⊢ ( 𝜑 → ( 𝑀 seqstr 𝐹 ) Fn ℕ0 ) |