| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sseqval.1 | ⊢ ( 𝜑  →  𝑆  ∈  V ) | 
						
							| 2 |  | sseqval.2 | ⊢ ( 𝜑  →  𝑀  ∈  Word  𝑆 ) | 
						
							| 3 |  | sseqval.3 | ⊢ 𝑊  =  ( Word  𝑆  ∩  ( ◡ ♯  “  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) | 
						
							| 4 |  | sseqval.4 | ⊢ ( 𝜑  →  𝐹 : 𝑊 ⟶ 𝑆 ) | 
						
							| 5 |  | elex | ⊢ ( 𝑀  ∈  Word  𝑆  →  𝑀  ∈  V ) | 
						
							| 6 | 2 5 | syl | ⊢ ( 𝜑  →  𝑀  ∈  V ) | 
						
							| 7 |  | lencl | ⊢ ( 𝑀  ∈  Word  𝑆  →  ( ♯ ‘ 𝑀 )  ∈  ℕ0 ) | 
						
							| 8 | 7 | nn0zd | ⊢ ( 𝑀  ∈  Word  𝑆  →  ( ♯ ‘ 𝑀 )  ∈  ℤ ) | 
						
							| 9 |  | uzid | ⊢ ( ( ♯ ‘ 𝑀 )  ∈  ℤ  →  ( ♯ ‘ 𝑀 )  ∈  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) | 
						
							| 10 | 2 8 9 | 3syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑀 )  ∈  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) | 
						
							| 11 |  | hashf | ⊢ ♯ : V ⟶ ( ℕ0  ∪  { +∞ } ) | 
						
							| 12 |  | ffn | ⊢ ( ♯ : V ⟶ ( ℕ0  ∪  { +∞ } )  →  ♯  Fn  V ) | 
						
							| 13 |  | elpreima | ⊢ ( ♯  Fn  V  →  ( 𝑀  ∈  ( ◡ ♯  “  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) )  ↔  ( 𝑀  ∈  V  ∧  ( ♯ ‘ 𝑀 )  ∈  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) ) | 
						
							| 14 | 11 12 13 | mp2b | ⊢ ( 𝑀  ∈  ( ◡ ♯  “  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) )  ↔  ( 𝑀  ∈  V  ∧  ( ♯ ‘ 𝑀 )  ∈  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) | 
						
							| 15 | 6 10 14 | sylanbrc | ⊢ ( 𝜑  →  𝑀  ∈  ( ◡ ♯  “  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) | 
						
							| 16 | 2 15 | elind | ⊢ ( 𝜑  →  𝑀  ∈  ( Word  𝑆  ∩  ( ◡ ♯  “  ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) ) | 
						
							| 17 | 16 3 | eleqtrrdi | ⊢ ( 𝜑  →  𝑀  ∈  𝑊 ) |