Step |
Hyp |
Ref |
Expression |
1 |
|
sseqval.1 |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
2 |
|
sseqval.2 |
⊢ ( 𝜑 → 𝑀 ∈ Word 𝑆 ) |
3 |
|
sseqval.3 |
⊢ 𝑊 = ( Word 𝑆 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) |
4 |
|
sseqval.4 |
⊢ ( 𝜑 → 𝐹 : 𝑊 ⟶ 𝑆 ) |
5 |
|
elex |
⊢ ( 𝑀 ∈ Word 𝑆 → 𝑀 ∈ V ) |
6 |
2 5
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ V ) |
7 |
|
lencl |
⊢ ( 𝑀 ∈ Word 𝑆 → ( ♯ ‘ 𝑀 ) ∈ ℕ0 ) |
8 |
7
|
nn0zd |
⊢ ( 𝑀 ∈ Word 𝑆 → ( ♯ ‘ 𝑀 ) ∈ ℤ ) |
9 |
|
uzid |
⊢ ( ( ♯ ‘ 𝑀 ) ∈ ℤ → ( ♯ ‘ 𝑀 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) |
10 |
2 8 9
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑀 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) |
11 |
|
hashf |
⊢ ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) |
12 |
|
ffn |
⊢ ( ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) → ♯ Fn V ) |
13 |
|
elpreima |
⊢ ( ♯ Fn V → ( 𝑀 ∈ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ↔ ( 𝑀 ∈ V ∧ ( ♯ ‘ 𝑀 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) ) |
14 |
11 12 13
|
mp2b |
⊢ ( 𝑀 ∈ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ↔ ( 𝑀 ∈ V ∧ ( ♯ ‘ 𝑀 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) |
15 |
6 10 14
|
sylanbrc |
⊢ ( 𝜑 → 𝑀 ∈ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) |
16 |
2 15
|
elind |
⊢ ( 𝜑 → 𝑀 ∈ ( Word 𝑆 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) ) |
17 |
16 3
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑀 ∈ 𝑊 ) |