Metamath Proof Explorer


Theorem sseqmw

Description: Lemma for sseqf amd sseqp1 . (Contributed by Thierry Arnoux, 25-Apr-2019)

Ref Expression
Hypotheses sseqval.1 ( 𝜑𝑆 ∈ V )
sseqval.2 ( 𝜑𝑀 ∈ Word 𝑆 )
sseqval.3 𝑊 = ( Word 𝑆 ∩ ( ♯ “ ( ℤ ‘ ( ♯ ‘ 𝑀 ) ) ) )
sseqval.4 ( 𝜑𝐹 : 𝑊𝑆 )
Assertion sseqmw ( 𝜑𝑀𝑊 )

Proof

Step Hyp Ref Expression
1 sseqval.1 ( 𝜑𝑆 ∈ V )
2 sseqval.2 ( 𝜑𝑀 ∈ Word 𝑆 )
3 sseqval.3 𝑊 = ( Word 𝑆 ∩ ( ♯ “ ( ℤ ‘ ( ♯ ‘ 𝑀 ) ) ) )
4 sseqval.4 ( 𝜑𝐹 : 𝑊𝑆 )
5 elex ( 𝑀 ∈ Word 𝑆𝑀 ∈ V )
6 2 5 syl ( 𝜑𝑀 ∈ V )
7 lencl ( 𝑀 ∈ Word 𝑆 → ( ♯ ‘ 𝑀 ) ∈ ℕ0 )
8 7 nn0zd ( 𝑀 ∈ Word 𝑆 → ( ♯ ‘ 𝑀 ) ∈ ℤ )
9 uzid ( ( ♯ ‘ 𝑀 ) ∈ ℤ → ( ♯ ‘ 𝑀 ) ∈ ( ℤ ‘ ( ♯ ‘ 𝑀 ) ) )
10 2 8 9 3syl ( 𝜑 → ( ♯ ‘ 𝑀 ) ∈ ( ℤ ‘ ( ♯ ‘ 𝑀 ) ) )
11 hashf ♯ : V ⟶ ( ℕ0 ∪ { +∞ } )
12 ffn ( ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) → ♯ Fn V )
13 elpreima ( ♯ Fn V → ( 𝑀 ∈ ( ♯ “ ( ℤ ‘ ( ♯ ‘ 𝑀 ) ) ) ↔ ( 𝑀 ∈ V ∧ ( ♯ ‘ 𝑀 ) ∈ ( ℤ ‘ ( ♯ ‘ 𝑀 ) ) ) ) )
14 11 12 13 mp2b ( 𝑀 ∈ ( ♯ “ ( ℤ ‘ ( ♯ ‘ 𝑀 ) ) ) ↔ ( 𝑀 ∈ V ∧ ( ♯ ‘ 𝑀 ) ∈ ( ℤ ‘ ( ♯ ‘ 𝑀 ) ) ) )
15 6 10 14 sylanbrc ( 𝜑𝑀 ∈ ( ♯ “ ( ℤ ‘ ( ♯ ‘ 𝑀 ) ) ) )
16 2 15 elind ( 𝜑𝑀 ∈ ( Word 𝑆 ∩ ( ♯ “ ( ℤ ‘ ( ♯ ‘ 𝑀 ) ) ) ) )
17 16 3 eleqtrrdi ( 𝜑𝑀𝑊 )