Step |
Hyp |
Ref |
Expression |
1 |
|
sseqval.1 |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
2 |
|
sseqval.2 |
⊢ ( 𝜑 → 𝑀 ∈ Word 𝑆 ) |
3 |
|
sseqval.3 |
⊢ 𝑊 = ( Word 𝑆 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) |
4 |
|
sseqval.4 |
⊢ ( 𝜑 → 𝐹 : 𝑊 ⟶ 𝑆 ) |
5 |
|
wrdf |
⊢ ( 𝑀 ∈ Word 𝑆 → 𝑀 : ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ⟶ 𝑆 ) |
6 |
2 5
|
syl |
⊢ ( 𝜑 → 𝑀 : ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ⟶ 𝑆 ) |
7 |
|
vex |
⊢ 𝑤 ∈ V |
8 |
7
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑊 ∖ { ∅ } ) ) → 𝑤 ∈ V ) |
9 |
|
fvex |
⊢ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ∈ V |
10 |
|
df-lsw |
⊢ lastS = ( 𝑥 ∈ V ↦ ( 𝑥 ‘ ( ( ♯ ‘ 𝑥 ) − 1 ) ) ) |
11 |
9 10
|
dmmpti |
⊢ dom lastS = V |
12 |
8 11
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑊 ∖ { ∅ } ) ) → 𝑤 ∈ dom lastS ) |
13 |
|
eldifsn |
⊢ ( 𝑤 ∈ ( 𝑊 ∖ { ∅ } ) ↔ ( 𝑤 ∈ 𝑊 ∧ 𝑤 ≠ ∅ ) ) |
14 |
|
inss1 |
⊢ ( Word 𝑆 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) ⊆ Word 𝑆 |
15 |
3 14
|
eqsstri |
⊢ 𝑊 ⊆ Word 𝑆 |
16 |
15
|
sseli |
⊢ ( 𝑤 ∈ 𝑊 → 𝑤 ∈ Word 𝑆 ) |
17 |
|
lswcl |
⊢ ( ( 𝑤 ∈ Word 𝑆 ∧ 𝑤 ≠ ∅ ) → ( lastS ‘ 𝑤 ) ∈ 𝑆 ) |
18 |
16 17
|
sylan |
⊢ ( ( 𝑤 ∈ 𝑊 ∧ 𝑤 ≠ ∅ ) → ( lastS ‘ 𝑤 ) ∈ 𝑆 ) |
19 |
13 18
|
sylbi |
⊢ ( 𝑤 ∈ ( 𝑊 ∖ { ∅ } ) → ( lastS ‘ 𝑤 ) ∈ 𝑆 ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑊 ∖ { ∅ } ) ) → ( lastS ‘ 𝑤 ) ∈ 𝑆 ) |
21 |
12 20
|
jca |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝑊 ∖ { ∅ } ) ) → ( 𝑤 ∈ dom lastS ∧ ( lastS ‘ 𝑤 ) ∈ 𝑆 ) ) |
22 |
21
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑤 ∈ ( 𝑊 ∖ { ∅ } ) ( 𝑤 ∈ dom lastS ∧ ( lastS ‘ 𝑤 ) ∈ 𝑆 ) ) |
23 |
9 10
|
fnmpti |
⊢ lastS Fn V |
24 |
|
fnfun |
⊢ ( lastS Fn V → Fun lastS ) |
25 |
|
ffvresb |
⊢ ( Fun lastS → ( ( lastS ↾ ( 𝑊 ∖ { ∅ } ) ) : ( 𝑊 ∖ { ∅ } ) ⟶ 𝑆 ↔ ∀ 𝑤 ∈ ( 𝑊 ∖ { ∅ } ) ( 𝑤 ∈ dom lastS ∧ ( lastS ‘ 𝑤 ) ∈ 𝑆 ) ) ) |
26 |
23 24 25
|
mp2b |
⊢ ( ( lastS ↾ ( 𝑊 ∖ { ∅ } ) ) : ( 𝑊 ∖ { ∅ } ) ⟶ 𝑆 ↔ ∀ 𝑤 ∈ ( 𝑊 ∖ { ∅ } ) ( 𝑤 ∈ dom lastS ∧ ( lastS ‘ 𝑤 ) ∈ 𝑆 ) ) |
27 |
22 26
|
sylibr |
⊢ ( 𝜑 → ( lastS ↾ ( 𝑊 ∖ { ∅ } ) ) : ( 𝑊 ∖ { ∅ } ) ⟶ 𝑆 ) |
28 |
|
eqid |
⊢ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) = ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) |
29 |
|
lencl |
⊢ ( 𝑀 ∈ Word 𝑆 → ( ♯ ‘ 𝑀 ) ∈ ℕ0 ) |
30 |
29
|
nn0zd |
⊢ ( 𝑀 ∈ Word 𝑆 → ( ♯ ‘ 𝑀 ) ∈ ℤ ) |
31 |
2 30
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑀 ) ∈ ℤ ) |
32 |
|
ovex |
⊢ ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) ∈ V |
33 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) → 𝑎 ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) |
34 |
2 29
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑀 ) ∈ ℕ0 ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) → ( ♯ ‘ 𝑀 ) ∈ ℕ0 ) |
36 |
|
elnn0uz |
⊢ ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝑀 ) ∈ ( ℤ≥ ‘ 0 ) ) |
37 |
35 36
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) → ( ♯ ‘ 𝑀 ) ∈ ( ℤ≥ ‘ 0 ) ) |
38 |
|
uztrn |
⊢ ( ( 𝑎 ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ∧ ( ♯ ‘ 𝑀 ) ∈ ( ℤ≥ ‘ 0 ) ) → 𝑎 ∈ ( ℤ≥ ‘ 0 ) ) |
39 |
33 37 38
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) → 𝑎 ∈ ( ℤ≥ ‘ 0 ) ) |
40 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
41 |
39 40
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) → 𝑎 ∈ ℕ0 ) |
42 |
|
fvconst2g |
⊢ ( ( ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) ∈ V ∧ 𝑎 ∈ ℕ0 ) → ( ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ‘ 𝑎 ) = ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) ) |
43 |
32 41 42
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) → ( ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ‘ 𝑎 ) = ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) ) |
44 |
1 2 3 4
|
sseqmw |
⊢ ( 𝜑 → 𝑀 ∈ 𝑊 ) |
45 |
4 44
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ 𝑆 ) |
46 |
45
|
s1cld |
⊢ ( 𝜑 → 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ∈ Word 𝑆 ) |
47 |
|
ccatcl |
⊢ ( ( 𝑀 ∈ Word 𝑆 ∧ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ∈ Word 𝑆 ) → ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) ∈ Word 𝑆 ) |
48 |
2 46 47
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) ∈ Word 𝑆 ) |
49 |
32
|
a1i |
⊢ ( 𝜑 → ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) ∈ V ) |
50 |
|
ccatws1len |
⊢ ( 𝑀 ∈ Word 𝑆 → ( ♯ ‘ ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) ) = ( ( ♯ ‘ 𝑀 ) + 1 ) ) |
51 |
2 50
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) ) = ( ( ♯ ‘ 𝑀 ) + 1 ) ) |
52 |
|
uzid |
⊢ ( ( ♯ ‘ 𝑀 ) ∈ ℤ → ( ♯ ‘ 𝑀 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) |
53 |
|
peano2uz |
⊢ ( ( ♯ ‘ 𝑀 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) → ( ( ♯ ‘ 𝑀 ) + 1 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) |
54 |
31 52 53
|
3syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑀 ) + 1 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) |
55 |
51 54
|
eqeltrd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) |
56 |
|
hashf |
⊢ ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) |
57 |
|
ffn |
⊢ ( ♯ : V ⟶ ( ℕ0 ∪ { +∞ } ) → ♯ Fn V ) |
58 |
|
elpreima |
⊢ ( ♯ Fn V → ( ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) ∈ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ↔ ( ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) ∈ V ∧ ( ♯ ‘ ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) ) |
59 |
56 57 58
|
mp2b |
⊢ ( ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) ∈ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ↔ ( ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) ∈ V ∧ ( ♯ ‘ ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) |
60 |
49 55 59
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) ∈ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) |
61 |
48 60
|
elind |
⊢ ( 𝜑 → ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) ∈ ( Word 𝑆 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) ) |
62 |
61 3
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) ∈ 𝑊 ) |
63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) → ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) ∈ 𝑊 ) |
64 |
|
ccatws1n0 |
⊢ ( 𝑀 ∈ Word 𝑆 → ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) ≠ ∅ ) |
65 |
2 64
|
syl |
⊢ ( 𝜑 → ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) ≠ ∅ ) |
66 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) → ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) ≠ ∅ ) |
67 |
|
eldifsn |
⊢ ( ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) ∈ ( 𝑊 ∖ { ∅ } ) ↔ ( ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) ∈ 𝑊 ∧ ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) ≠ ∅ ) ) |
68 |
63 66 67
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) → ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) ∈ ( 𝑊 ∖ { ∅ } ) ) |
69 |
43 68
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) → ( ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ‘ 𝑎 ) ∈ ( 𝑊 ∖ { ∅ } ) ) |
70 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) ∧ 𝑏 ∈ ( 𝑊 ∖ { ∅ } ) ) ) → ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) ) |
71 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) ∧ 𝑏 ∈ ( 𝑊 ∖ { ∅ } ) ) ) ∧ ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) ) → 𝑥 = 𝑎 ) |
72 |
71
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) ∧ 𝑏 ∈ ( 𝑊 ∖ { ∅ } ) ) ) ∧ ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑎 ) ) |
73 |
72
|
s1eqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) ∧ 𝑏 ∈ ( 𝑊 ∖ { ∅ } ) ) ) ∧ ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) ) → 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 = 〈“ ( 𝐹 ‘ 𝑎 ) ”〉 ) |
74 |
71 73
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) ∧ 𝑏 ∈ ( 𝑊 ∖ { ∅ } ) ) ) ∧ ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) ) → ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) = ( 𝑎 ++ 〈“ ( 𝐹 ‘ 𝑎 ) ”〉 ) ) |
75 |
|
vex |
⊢ 𝑎 ∈ V |
76 |
75
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) ∧ 𝑏 ∈ ( 𝑊 ∖ { ∅ } ) ) ) → 𝑎 ∈ V ) |
77 |
|
vex |
⊢ 𝑏 ∈ V |
78 |
77
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) ∧ 𝑏 ∈ ( 𝑊 ∖ { ∅ } ) ) ) → 𝑏 ∈ V ) |
79 |
|
ovex |
⊢ ( 𝑎 ++ 〈“ ( 𝐹 ‘ 𝑎 ) ”〉 ) ∈ V |
80 |
79
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) ∧ 𝑏 ∈ ( 𝑊 ∖ { ∅ } ) ) ) → ( 𝑎 ++ 〈“ ( 𝐹 ‘ 𝑎 ) ”〉 ) ∈ V ) |
81 |
70 74 76 78 80
|
ovmpod |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) ∧ 𝑏 ∈ ( 𝑊 ∖ { ∅ } ) ) ) → ( 𝑎 ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) 𝑏 ) = ( 𝑎 ++ 〈“ ( 𝐹 ‘ 𝑎 ) ”〉 ) ) |
82 |
|
eldifi |
⊢ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) → 𝑎 ∈ 𝑊 ) |
83 |
82
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) ∧ 𝑏 ∈ ( 𝑊 ∖ { ∅ } ) ) ) → 𝑎 ∈ 𝑊 ) |
84 |
15 83
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) ∧ 𝑏 ∈ ( 𝑊 ∖ { ∅ } ) ) ) → 𝑎 ∈ Word 𝑆 ) |
85 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) ∧ 𝑏 ∈ ( 𝑊 ∖ { ∅ } ) ) ) → 𝐹 : 𝑊 ⟶ 𝑆 ) |
86 |
85 83
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) ∧ 𝑏 ∈ ( 𝑊 ∖ { ∅ } ) ) ) → ( 𝐹 ‘ 𝑎 ) ∈ 𝑆 ) |
87 |
86
|
s1cld |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) ∧ 𝑏 ∈ ( 𝑊 ∖ { ∅ } ) ) ) → 〈“ ( 𝐹 ‘ 𝑎 ) ”〉 ∈ Word 𝑆 ) |
88 |
|
ccatcl |
⊢ ( ( 𝑎 ∈ Word 𝑆 ∧ 〈“ ( 𝐹 ‘ 𝑎 ) ”〉 ∈ Word 𝑆 ) → ( 𝑎 ++ 〈“ ( 𝐹 ‘ 𝑎 ) ”〉 ) ∈ Word 𝑆 ) |
89 |
84 87 88
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) ∧ 𝑏 ∈ ( 𝑊 ∖ { ∅ } ) ) ) → ( 𝑎 ++ 〈“ ( 𝐹 ‘ 𝑎 ) ”〉 ) ∈ Word 𝑆 ) |
90 |
15 82
|
sselid |
⊢ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) → 𝑎 ∈ Word 𝑆 ) |
91 |
90
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) ∧ 𝑏 ∈ ( 𝑊 ∖ { ∅ } ) ) ) → 𝑎 ∈ Word 𝑆 ) |
92 |
|
ccatws1len |
⊢ ( 𝑎 ∈ Word 𝑆 → ( ♯ ‘ ( 𝑎 ++ 〈“ ( 𝐹 ‘ 𝑎 ) ”〉 ) ) = ( ( ♯ ‘ 𝑎 ) + 1 ) ) |
93 |
91 92
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) ∧ 𝑏 ∈ ( 𝑊 ∖ { ∅ } ) ) ) → ( ♯ ‘ ( 𝑎 ++ 〈“ ( 𝐹 ‘ 𝑎 ) ”〉 ) ) = ( ( ♯ ‘ 𝑎 ) + 1 ) ) |
94 |
83 3
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) ∧ 𝑏 ∈ ( 𝑊 ∖ { ∅ } ) ) ) → 𝑎 ∈ ( Word 𝑆 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) ) |
95 |
94
|
elin2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) ∧ 𝑏 ∈ ( 𝑊 ∖ { ∅ } ) ) ) → 𝑎 ∈ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) |
96 |
|
elpreima |
⊢ ( ♯ Fn V → ( 𝑎 ∈ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ↔ ( 𝑎 ∈ V ∧ ( ♯ ‘ 𝑎 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) ) |
97 |
56 57 96
|
mp2b |
⊢ ( 𝑎 ∈ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ↔ ( 𝑎 ∈ V ∧ ( ♯ ‘ 𝑎 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) |
98 |
95 97
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) ∧ 𝑏 ∈ ( 𝑊 ∖ { ∅ } ) ) ) → ( 𝑎 ∈ V ∧ ( ♯ ‘ 𝑎 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) |
99 |
|
peano2uz |
⊢ ( ( ♯ ‘ 𝑎 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) → ( ( ♯ ‘ 𝑎 ) + 1 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) |
100 |
98 99
|
simpl2im |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) ∧ 𝑏 ∈ ( 𝑊 ∖ { ∅ } ) ) ) → ( ( ♯ ‘ 𝑎 ) + 1 ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) |
101 |
93 100
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) ∧ 𝑏 ∈ ( 𝑊 ∖ { ∅ } ) ) ) → ( ♯ ‘ ( 𝑎 ++ 〈“ ( 𝐹 ‘ 𝑎 ) ”〉 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) |
102 |
|
elpreima |
⊢ ( ♯ Fn V → ( ( 𝑎 ++ 〈“ ( 𝐹 ‘ 𝑎 ) ”〉 ) ∈ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ↔ ( ( 𝑎 ++ 〈“ ( 𝐹 ‘ 𝑎 ) ”〉 ) ∈ V ∧ ( ♯ ‘ ( 𝑎 ++ 〈“ ( 𝐹 ‘ 𝑎 ) ”〉 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) ) |
103 |
56 57 102
|
mp2b |
⊢ ( ( 𝑎 ++ 〈“ ( 𝐹 ‘ 𝑎 ) ”〉 ) ∈ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ↔ ( ( 𝑎 ++ 〈“ ( 𝐹 ‘ 𝑎 ) ”〉 ) ∈ V ∧ ( ♯ ‘ ( 𝑎 ++ 〈“ ( 𝐹 ‘ 𝑎 ) ”〉 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) |
104 |
80 101 103
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) ∧ 𝑏 ∈ ( 𝑊 ∖ { ∅ } ) ) ) → ( 𝑎 ++ 〈“ ( 𝐹 ‘ 𝑎 ) ”〉 ) ∈ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) |
105 |
89 104
|
elind |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) ∧ 𝑏 ∈ ( 𝑊 ∖ { ∅ } ) ) ) → ( 𝑎 ++ 〈“ ( 𝐹 ‘ 𝑎 ) ”〉 ) ∈ ( Word 𝑆 ∩ ( ◡ ♯ “ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) ) |
106 |
105 3
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) ∧ 𝑏 ∈ ( 𝑊 ∖ { ∅ } ) ) ) → ( 𝑎 ++ 〈“ ( 𝐹 ‘ 𝑎 ) ”〉 ) ∈ 𝑊 ) |
107 |
|
ccatws1n0 |
⊢ ( 𝑎 ∈ Word 𝑆 → ( 𝑎 ++ 〈“ ( 𝐹 ‘ 𝑎 ) ”〉 ) ≠ ∅ ) |
108 |
91 107
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) ∧ 𝑏 ∈ ( 𝑊 ∖ { ∅ } ) ) ) → ( 𝑎 ++ 〈“ ( 𝐹 ‘ 𝑎 ) ”〉 ) ≠ ∅ ) |
109 |
|
eldifsn |
⊢ ( ( 𝑎 ++ 〈“ ( 𝐹 ‘ 𝑎 ) ”〉 ) ∈ ( 𝑊 ∖ { ∅ } ) ↔ ( ( 𝑎 ++ 〈“ ( 𝐹 ‘ 𝑎 ) ”〉 ) ∈ 𝑊 ∧ ( 𝑎 ++ 〈“ ( 𝐹 ‘ 𝑎 ) ”〉 ) ≠ ∅ ) ) |
110 |
106 108 109
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) ∧ 𝑏 ∈ ( 𝑊 ∖ { ∅ } ) ) ) → ( 𝑎 ++ 〈“ ( 𝐹 ‘ 𝑎 ) ”〉 ) ∈ ( 𝑊 ∖ { ∅ } ) ) |
111 |
81 110
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( 𝑊 ∖ { ∅ } ) ∧ 𝑏 ∈ ( 𝑊 ∖ { ∅ } ) ) ) → ( 𝑎 ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) 𝑏 ) ∈ ( 𝑊 ∖ { ∅ } ) ) |
112 |
28 31 69 111
|
seqf |
⊢ ( 𝜑 → seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) : ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ⟶ ( 𝑊 ∖ { ∅ } ) ) |
113 |
|
fco2 |
⊢ ( ( ( lastS ↾ ( 𝑊 ∖ { ∅ } ) ) : ( 𝑊 ∖ { ∅ } ) ⟶ 𝑆 ∧ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) : ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ⟶ ( 𝑊 ∖ { ∅ } ) ) → ( lastS ∘ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) : ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ⟶ 𝑆 ) |
114 |
27 112 113
|
syl2anc |
⊢ ( 𝜑 → ( lastS ∘ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) : ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ⟶ 𝑆 ) |
115 |
|
fzouzdisj |
⊢ ( ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ∩ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) = ∅ |
116 |
115
|
a1i |
⊢ ( 𝜑 → ( ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ∩ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) = ∅ ) |
117 |
|
fun |
⊢ ( ( ( 𝑀 : ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ⟶ 𝑆 ∧ ( lastS ∘ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) : ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ⟶ 𝑆 ) ∧ ( ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ∩ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) = ∅ ) → ( 𝑀 ∪ ( lastS ∘ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) ) : ( ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ∪ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ⟶ ( 𝑆 ∪ 𝑆 ) ) |
118 |
6 114 116 117
|
syl21anc |
⊢ ( 𝜑 → ( 𝑀 ∪ ( lastS ∘ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) ) : ( ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ∪ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ⟶ ( 𝑆 ∪ 𝑆 ) ) |
119 |
1 2 3 4
|
sseqval |
⊢ ( 𝜑 → ( 𝑀 seqstr 𝐹 ) = ( 𝑀 ∪ ( lastS ∘ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) ) ) |
120 |
|
fzouzsplit |
⊢ ( ( ♯ ‘ 𝑀 ) ∈ ( ℤ≥ ‘ 0 ) → ( ℤ≥ ‘ 0 ) = ( ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ∪ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) |
121 |
36 120
|
sylbi |
⊢ ( ( ♯ ‘ 𝑀 ) ∈ ℕ0 → ( ℤ≥ ‘ 0 ) = ( ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ∪ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) |
122 |
2 29 121
|
3syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ 0 ) = ( ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ∪ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) |
123 |
40 122
|
eqtrid |
⊢ ( 𝜑 → ℕ0 = ( ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ∪ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ) |
124 |
|
unidm |
⊢ ( 𝑆 ∪ 𝑆 ) = 𝑆 |
125 |
124
|
a1i |
⊢ ( 𝜑 → ( 𝑆 ∪ 𝑆 ) = 𝑆 ) |
126 |
125
|
eqcomd |
⊢ ( 𝜑 → 𝑆 = ( 𝑆 ∪ 𝑆 ) ) |
127 |
119 123 126
|
feq123d |
⊢ ( 𝜑 → ( ( 𝑀 seqstr 𝐹 ) : ℕ0 ⟶ 𝑆 ↔ ( 𝑀 ∪ ( lastS ∘ seq ( ♯ ‘ 𝑀 ) ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ( 𝑥 ++ 〈“ ( 𝐹 ‘ 𝑥 ) ”〉 ) ) , ( ℕ0 × { ( 𝑀 ++ 〈“ ( 𝐹 ‘ 𝑀 ) ”〉 ) } ) ) ) ) : ( ( 0 ..^ ( ♯ ‘ 𝑀 ) ) ∪ ( ℤ≥ ‘ ( ♯ ‘ 𝑀 ) ) ) ⟶ ( 𝑆 ∪ 𝑆 ) ) ) |
128 |
118 127
|
mpbird |
⊢ ( 𝜑 → ( 𝑀 seqstr 𝐹 ) : ℕ0 ⟶ 𝑆 ) |