Metamath Proof Explorer


Theorem sseqmw

Description: Lemma for sseqf amd sseqp1 . (Contributed by Thierry Arnoux, 25-Apr-2019)

Ref Expression
Hypotheses sseqval.1 φ S V
sseqval.2 φ M Word S
sseqval.3 W = Word S . -1 M
sseqval.4 φ F : W S
Assertion sseqmw φ M W

Proof

Step Hyp Ref Expression
1 sseqval.1 φ S V
2 sseqval.2 φ M Word S
3 sseqval.3 W = Word S . -1 M
4 sseqval.4 φ F : W S
5 elex M Word S M V
6 2 5 syl φ M V
7 lencl M Word S M 0
8 7 nn0zd M Word S M
9 uzid M M M
10 2 8 9 3syl φ M M
11 hashf . : V 0 +∞
12 ffn . : V 0 +∞ . Fn V
13 elpreima . Fn V M . -1 M M V M M
14 11 12 13 mp2b M . -1 M M V M M
15 6 10 14 sylanbrc φ M . -1 M
16 2 15 elind φ M Word S . -1 M
17 16 3 eleqtrrdi φ M W