Metamath Proof Explorer


Theorem sseqfn

Description: A strong recursive sequence is a function over the nonnegative integers. (Contributed by Thierry Arnoux, 23-Apr-2019)

Ref Expression
Hypotheses sseqval.1 φSV
sseqval.2 φMWordS
sseqval.3 W=WordS.-1M
sseqval.4 φF:WS
Assertion sseqfn φMseqstrFFn0

Proof

Step Hyp Ref Expression
1 sseqval.1 φSV
2 sseqval.2 φMWordS
3 sseqval.3 W=WordS.-1M
4 sseqval.4 φF:WS
5 wrdfn MWordSMFn0..^M
6 2 5 syl φMFn0..^M
7 fvex xx1V
8 df-lsw lastS=xVxx1
9 7 8 fnmpti lastSFnV
10 9 a1i φlastSFnV
11 lencl MWordSM0
12 11 nn0zd MWordSM
13 seqfn MseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩FnM
14 2 12 13 3syl φseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩FnM
15 ssv ranseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩V
16 15 a1i φranseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩V
17 fnco lastSFnVseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩FnMranseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩VlastSseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩FnM
18 10 14 16 17 syl3anc φlastSseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩FnM
19 fzouzdisj 0..^MM=
20 19 a1i φ0..^MM=
21 6 18 20 fnund φMlastSseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩Fn0..^MM
22 1 2 3 4 sseqval φMseqstrF=MlastSseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩
23 nn0uz 0=0
24 elnn0uz M0M0
25 fzouzsplit M00=0..^MM
26 24 25 sylbi M00=0..^MM
27 2 11 26 3syl φ0=0..^MM
28 23 27 eqtrid φ0=0..^MM
29 22 28 fneq12d φMseqstrFFn0MlastSseqMxV,yVx++⟨“Fx”⟩0×M++⟨“FM”⟩Fn0..^MM
30 21 29 mpbird φMseqstrFFn0