Description: Lemma for sseqp1 . (Contributed by Thierry Arnoux, 25-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iwrdsplit.s | |- ( ph -> S e. _V ) |
|
| iwrdsplit.f | |- ( ph -> F : NN0 --> S ) |
||
| iwrdsplit.n | |- ( ph -> N e. NN0 ) |
||
| Assertion | subiwrd | |- ( ph -> ( F |` ( 0 ..^ N ) ) e. Word S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iwrdsplit.s | |- ( ph -> S e. _V ) |
|
| 2 | iwrdsplit.f | |- ( ph -> F : NN0 --> S ) |
|
| 3 | iwrdsplit.n | |- ( ph -> N e. NN0 ) |
|
| 4 | fzo0ssnn0 | |- ( 0 ..^ N ) C_ NN0 |
|
| 5 | fssres | |- ( ( F : NN0 --> S /\ ( 0 ..^ N ) C_ NN0 ) -> ( F |` ( 0 ..^ N ) ) : ( 0 ..^ N ) --> S ) |
|
| 6 | 2 4 5 | sylancl | |- ( ph -> ( F |` ( 0 ..^ N ) ) : ( 0 ..^ N ) --> S ) |
| 7 | iswrdi | |- ( ( F |` ( 0 ..^ N ) ) : ( 0 ..^ N ) --> S -> ( F |` ( 0 ..^ N ) ) e. Word S ) |
|
| 8 | 6 7 | syl | |- ( ph -> ( F |` ( 0 ..^ N ) ) e. Word S ) |