Metamath Proof Explorer


Theorem subiwrd

Description: Lemma for sseqp1 . (Contributed by Thierry Arnoux, 25-Apr-2019)

Ref Expression
Hypotheses iwrdsplit.s
|- ( ph -> S e. _V )
iwrdsplit.f
|- ( ph -> F : NN0 --> S )
iwrdsplit.n
|- ( ph -> N e. NN0 )
Assertion subiwrd
|- ( ph -> ( F |` ( 0 ..^ N ) ) e. Word S )

Proof

Step Hyp Ref Expression
1 iwrdsplit.s
 |-  ( ph -> S e. _V )
2 iwrdsplit.f
 |-  ( ph -> F : NN0 --> S )
3 iwrdsplit.n
 |-  ( ph -> N e. NN0 )
4 fzo0ssnn0
 |-  ( 0 ..^ N ) C_ NN0
5 fssres
 |-  ( ( F : NN0 --> S /\ ( 0 ..^ N ) C_ NN0 ) -> ( F |` ( 0 ..^ N ) ) : ( 0 ..^ N ) --> S )
6 2 4 5 sylancl
 |-  ( ph -> ( F |` ( 0 ..^ N ) ) : ( 0 ..^ N ) --> S )
7 iswrdi
 |-  ( ( F |` ( 0 ..^ N ) ) : ( 0 ..^ N ) --> S -> ( F |` ( 0 ..^ N ) ) e. Word S )
8 6 7 syl
 |-  ( ph -> ( F |` ( 0 ..^ N ) ) e. Word S )