Description: Lemma for sseqp1 . (Contributed by Thierry Arnoux, 25-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iwrdsplit.s | ⊢ ( 𝜑 → 𝑆 ∈ V ) | |
| iwrdsplit.f | ⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ 𝑆 ) | ||
| iwrdsplit.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| Assertion | subiwrd | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ∈ Word 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iwrdsplit.s | ⊢ ( 𝜑 → 𝑆 ∈ V ) | |
| 2 | iwrdsplit.f | ⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ 𝑆 ) | |
| 3 | iwrdsplit.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 4 | fzo0ssnn0 | ⊢ ( 0 ..^ 𝑁 ) ⊆ ℕ0 | |
| 5 | fssres | ⊢ ( ( 𝐹 : ℕ0 ⟶ 𝑆 ∧ ( 0 ..^ 𝑁 ) ⊆ ℕ0 ) → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) : ( 0 ..^ 𝑁 ) ⟶ 𝑆 ) | |
| 6 | 2 4 5 | sylancl | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) : ( 0 ..^ 𝑁 ) ⟶ 𝑆 ) |
| 7 | iswrdi | ⊢ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) : ( 0 ..^ 𝑁 ) ⟶ 𝑆 → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ∈ Word 𝑆 ) | |
| 8 | 6 7 | syl | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ∈ Word 𝑆 ) |