Description: Lemma for sseqp1 . (Contributed by Thierry Arnoux, 25-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iwrdsplit.s | ⊢ ( 𝜑 → 𝑆 ∈ V ) | |
iwrdsplit.f | ⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ 𝑆 ) | ||
iwrdsplit.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
Assertion | subiwrd | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ∈ Word 𝑆 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iwrdsplit.s | ⊢ ( 𝜑 → 𝑆 ∈ V ) | |
2 | iwrdsplit.f | ⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ 𝑆 ) | |
3 | iwrdsplit.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
4 | fzo0ssnn0 | ⊢ ( 0 ..^ 𝑁 ) ⊆ ℕ0 | |
5 | fssres | ⊢ ( ( 𝐹 : ℕ0 ⟶ 𝑆 ∧ ( 0 ..^ 𝑁 ) ⊆ ℕ0 ) → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) : ( 0 ..^ 𝑁 ) ⟶ 𝑆 ) | |
6 | 2 4 5 | sylancl | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) : ( 0 ..^ 𝑁 ) ⟶ 𝑆 ) |
7 | iswrdi | ⊢ ( ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) : ( 0 ..^ 𝑁 ) ⟶ 𝑆 → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ∈ Word 𝑆 ) | |
8 | 6 7 | syl | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 0 ..^ 𝑁 ) ) ∈ Word 𝑆 ) |