Description: A subring of a field is an integral domain. (Contributed by Thierry Arnoux, 18-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrfld.1 | ⊢ ( 𝜑 → 𝑅 ∈ Field ) | |
| subrfld.2 | ⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) | ||
| Assertion | subrfld | ⊢ ( 𝜑 → ( 𝑅 ↾s 𝑆 ) ∈ IDomn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrfld.1 | ⊢ ( 𝜑 → 𝑅 ∈ Field ) | |
| 2 | subrfld.2 | ⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 3 | fldidom | ⊢ ( 𝑅 ∈ Field → 𝑅 ∈ IDomn ) | |
| 4 | 1 3 | syl | ⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
| 5 | 4 2 | subridom | ⊢ ( 𝜑 → ( 𝑅 ↾s 𝑆 ) ∈ IDomn ) |