Description: A subring of an integral domain is an integral domain. (Contributed by Thierry Arnoux, 18-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subridom.1 | ⊢ ( 𝜑 → 𝑅 ∈ IDomn ) | |
| subridom.2 | ⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) | ||
| Assertion | subridom | ⊢ ( 𝜑 → ( 𝑅 ↾s 𝑆 ) ∈ IDomn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subridom.1 | ⊢ ( 𝜑 → 𝑅 ∈ IDomn ) | |
| 2 | subridom.2 | ⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 3 | 1 | idomcringd | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 4 | eqid | ⊢ ( 𝑅 ↾s 𝑆 ) = ( 𝑅 ↾s 𝑆 ) | |
| 5 | 4 | subrgcrng | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝑅 ↾s 𝑆 ) ∈ CRing ) |
| 6 | 3 2 5 | syl2anc | ⊢ ( 𝜑 → ( 𝑅 ↾s 𝑆 ) ∈ CRing ) |
| 7 | 1 | idomdomd | ⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
| 8 | 7 2 | subrdom | ⊢ ( 𝜑 → ( 𝑅 ↾s 𝑆 ) ∈ Domn ) |
| 9 | isidom | ⊢ ( ( 𝑅 ↾s 𝑆 ) ∈ IDomn ↔ ( ( 𝑅 ↾s 𝑆 ) ∈ CRing ∧ ( 𝑅 ↾s 𝑆 ) ∈ Domn ) ) | |
| 10 | 6 8 9 | sylanbrc | ⊢ ( 𝜑 → ( 𝑅 ↾s 𝑆 ) ∈ IDomn ) |