| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subridom.1 |
|- ( ph -> R e. IDomn ) |
| 2 |
|
subridom.2 |
|- ( ph -> S e. ( SubRing ` R ) ) |
| 3 |
1
|
idomcringd |
|- ( ph -> R e. CRing ) |
| 4 |
|
eqid |
|- ( R |`s S ) = ( R |`s S ) |
| 5 |
4
|
subrgcrng |
|- ( ( R e. CRing /\ S e. ( SubRing ` R ) ) -> ( R |`s S ) e. CRing ) |
| 6 |
3 2 5
|
syl2anc |
|- ( ph -> ( R |`s S ) e. CRing ) |
| 7 |
1
|
idomdomd |
|- ( ph -> R e. Domn ) |
| 8 |
7 2
|
subrdom |
|- ( ph -> ( R |`s S ) e. Domn ) |
| 9 |
|
isidom |
|- ( ( R |`s S ) e. IDomn <-> ( ( R |`s S ) e. CRing /\ ( R |`s S ) e. Domn ) ) |
| 10 |
6 8 9
|
sylanbrc |
|- ( ph -> ( R |`s S ) e. IDomn ) |