| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrdom.1 |
|- ( ph -> R e. Domn ) |
| 2 |
|
subrdom.2 |
|- ( ph -> S e. ( SubRing ` R ) ) |
| 3 |
|
domnnzr |
|- ( R e. Domn -> R e. NzRing ) |
| 4 |
1 3
|
syl |
|- ( ph -> R e. NzRing ) |
| 5 |
|
eqid |
|- ( R |`s S ) = ( R |`s S ) |
| 6 |
5
|
subrgnzr |
|- ( ( R e. NzRing /\ S e. ( SubRing ` R ) ) -> ( R |`s S ) e. NzRing ) |
| 7 |
4 2 6
|
syl2anc |
|- ( ph -> ( R |`s S ) e. NzRing ) |
| 8 |
1
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> R e. Domn ) |
| 9 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 10 |
9
|
subrgss |
|- ( S e. ( SubRing ` R ) -> S C_ ( Base ` R ) ) |
| 11 |
2 10
|
syl |
|- ( ph -> S C_ ( Base ` R ) ) |
| 12 |
11
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> S C_ ( Base ` R ) ) |
| 13 |
|
simpllr |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> x e. ( Base ` ( R |`s S ) ) ) |
| 14 |
5 9
|
ressbas2 |
|- ( S C_ ( Base ` R ) -> S = ( Base ` ( R |`s S ) ) ) |
| 15 |
11 14
|
syl |
|- ( ph -> S = ( Base ` ( R |`s S ) ) ) |
| 16 |
15
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> S = ( Base ` ( R |`s S ) ) ) |
| 17 |
13 16
|
eleqtrrd |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> x e. S ) |
| 18 |
12 17
|
sseldd |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> x e. ( Base ` R ) ) |
| 19 |
|
simplr |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> y e. ( Base ` ( R |`s S ) ) ) |
| 20 |
19 16
|
eleqtrrd |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> y e. S ) |
| 21 |
12 20
|
sseldd |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> y e. ( Base ` R ) ) |
| 22 |
|
simpr |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) |
| 23 |
2
|
elexd |
|- ( ph -> S e. _V ) |
| 24 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 25 |
5 24
|
ressmulr |
|- ( S e. _V -> ( .r ` R ) = ( .r ` ( R |`s S ) ) ) |
| 26 |
23 25
|
syl |
|- ( ph -> ( .r ` R ) = ( .r ` ( R |`s S ) ) ) |
| 27 |
26
|
oveqd |
|- ( ph -> ( x ( .r ` R ) y ) = ( x ( .r ` ( R |`s S ) ) y ) ) |
| 28 |
27
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> ( x ( .r ` R ) y ) = ( x ( .r ` ( R |`s S ) ) y ) ) |
| 29 |
|
subrgrcl |
|- ( S e. ( SubRing ` R ) -> R e. Ring ) |
| 30 |
|
ringmnd |
|- ( R e. Ring -> R e. Mnd ) |
| 31 |
2 29 30
|
3syl |
|- ( ph -> R e. Mnd ) |
| 32 |
|
subrgsubg |
|- ( S e. ( SubRing ` R ) -> S e. ( SubGrp ` R ) ) |
| 33 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 34 |
33
|
subg0cl |
|- ( S e. ( SubGrp ` R ) -> ( 0g ` R ) e. S ) |
| 35 |
2 32 34
|
3syl |
|- ( ph -> ( 0g ` R ) e. S ) |
| 36 |
5 9 33
|
ress0g |
|- ( ( R e. Mnd /\ ( 0g ` R ) e. S /\ S C_ ( Base ` R ) ) -> ( 0g ` R ) = ( 0g ` ( R |`s S ) ) ) |
| 37 |
31 35 11 36
|
syl3anc |
|- ( ph -> ( 0g ` R ) = ( 0g ` ( R |`s S ) ) ) |
| 38 |
37
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> ( 0g ` R ) = ( 0g ` ( R |`s S ) ) ) |
| 39 |
22 28 38
|
3eqtr4d |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> ( x ( .r ` R ) y ) = ( 0g ` R ) ) |
| 40 |
9 24 33
|
domneq0 |
|- ( ( R e. Domn /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( ( x ( .r ` R ) y ) = ( 0g ` R ) <-> ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) ) ) |
| 41 |
40
|
biimpa |
|- ( ( ( R e. Domn /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) /\ ( x ( .r ` R ) y ) = ( 0g ` R ) ) -> ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) ) |
| 42 |
8 18 21 39 41
|
syl31anc |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) ) |
| 43 |
38
|
eqeq2d |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> ( x = ( 0g ` R ) <-> x = ( 0g ` ( R |`s S ) ) ) ) |
| 44 |
38
|
eqeq2d |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> ( y = ( 0g ` R ) <-> y = ( 0g ` ( R |`s S ) ) ) ) |
| 45 |
43 44
|
orbi12d |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> ( ( x = ( 0g ` R ) \/ y = ( 0g ` R ) ) <-> ( x = ( 0g ` ( R |`s S ) ) \/ y = ( 0g ` ( R |`s S ) ) ) ) ) |
| 46 |
42 45
|
mpbid |
|- ( ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) /\ ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) ) -> ( x = ( 0g ` ( R |`s S ) ) \/ y = ( 0g ` ( R |`s S ) ) ) ) |
| 47 |
46
|
ex |
|- ( ( ( ph /\ x e. ( Base ` ( R |`s S ) ) ) /\ y e. ( Base ` ( R |`s S ) ) ) -> ( ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) -> ( x = ( 0g ` ( R |`s S ) ) \/ y = ( 0g ` ( R |`s S ) ) ) ) ) |
| 48 |
47
|
anasss |
|- ( ( ph /\ ( x e. ( Base ` ( R |`s S ) ) /\ y e. ( Base ` ( R |`s S ) ) ) ) -> ( ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) -> ( x = ( 0g ` ( R |`s S ) ) \/ y = ( 0g ` ( R |`s S ) ) ) ) ) |
| 49 |
48
|
ralrimivva |
|- ( ph -> A. x e. ( Base ` ( R |`s S ) ) A. y e. ( Base ` ( R |`s S ) ) ( ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) -> ( x = ( 0g ` ( R |`s S ) ) \/ y = ( 0g ` ( R |`s S ) ) ) ) ) |
| 50 |
|
eqid |
|- ( Base ` ( R |`s S ) ) = ( Base ` ( R |`s S ) ) |
| 51 |
|
eqid |
|- ( .r ` ( R |`s S ) ) = ( .r ` ( R |`s S ) ) |
| 52 |
|
eqid |
|- ( 0g ` ( R |`s S ) ) = ( 0g ` ( R |`s S ) ) |
| 53 |
50 51 52
|
isdomn |
|- ( ( R |`s S ) e. Domn <-> ( ( R |`s S ) e. NzRing /\ A. x e. ( Base ` ( R |`s S ) ) A. y e. ( Base ` ( R |`s S ) ) ( ( x ( .r ` ( R |`s S ) ) y ) = ( 0g ` ( R |`s S ) ) -> ( x = ( 0g ` ( R |`s S ) ) \/ y = ( 0g ` ( R |`s S ) ) ) ) ) ) |
| 54 |
7 49 53
|
sylanbrc |
|- ( ph -> ( R |`s S ) e. Domn ) |