| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrgnzr.1 |
|- S = ( R |`s A ) |
| 2 |
1
|
subrgring |
|- ( A e. ( SubRing ` R ) -> S e. Ring ) |
| 3 |
2
|
adantl |
|- ( ( R e. NzRing /\ A e. ( SubRing ` R ) ) -> S e. Ring ) |
| 4 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 5 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 6 |
4 5
|
nzrnz |
|- ( R e. NzRing -> ( 1r ` R ) =/= ( 0g ` R ) ) |
| 7 |
6
|
adantr |
|- ( ( R e. NzRing /\ A e. ( SubRing ` R ) ) -> ( 1r ` R ) =/= ( 0g ` R ) ) |
| 8 |
1 4
|
subrg1 |
|- ( A e. ( SubRing ` R ) -> ( 1r ` R ) = ( 1r ` S ) ) |
| 9 |
8
|
adantl |
|- ( ( R e. NzRing /\ A e. ( SubRing ` R ) ) -> ( 1r ` R ) = ( 1r ` S ) ) |
| 10 |
1 5
|
subrg0 |
|- ( A e. ( SubRing ` R ) -> ( 0g ` R ) = ( 0g ` S ) ) |
| 11 |
10
|
adantl |
|- ( ( R e. NzRing /\ A e. ( SubRing ` R ) ) -> ( 0g ` R ) = ( 0g ` S ) ) |
| 12 |
7 9 11
|
3netr3d |
|- ( ( R e. NzRing /\ A e. ( SubRing ` R ) ) -> ( 1r ` S ) =/= ( 0g ` S ) ) |
| 13 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
| 14 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
| 15 |
13 14
|
isnzr |
|- ( S e. NzRing <-> ( S e. Ring /\ ( 1r ` S ) =/= ( 0g ` S ) ) ) |
| 16 |
3 12 15
|
sylanbrc |
|- ( ( R e. NzRing /\ A e. ( SubRing ` R ) ) -> S e. NzRing ) |