| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrgnzr.1 |
⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) |
| 2 |
1
|
subrgring |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring ) |
| 3 |
2
|
adantl |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑆 ∈ Ring ) |
| 4 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 5 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 6 |
4 5
|
nzrnz |
⊢ ( 𝑅 ∈ NzRing → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 8 |
1 4
|
subrg1 |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) ) |
| 10 |
1 5
|
subrg0 |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑆 ) ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑆 ) ) |
| 12 |
7 9 11
|
3netr3d |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → ( 1r ‘ 𝑆 ) ≠ ( 0g ‘ 𝑆 ) ) |
| 13 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
| 14 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
| 15 |
13 14
|
isnzr |
⊢ ( 𝑆 ∈ NzRing ↔ ( 𝑆 ∈ Ring ∧ ( 1r ‘ 𝑆 ) ≠ ( 0g ‘ 𝑆 ) ) ) |
| 16 |
3 12 15
|
sylanbrc |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ) → 𝑆 ∈ NzRing ) |