| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrdom.1 |
|
| 2 |
|
subrdom.2 |
|
| 3 |
|
domnnzr |
|
| 4 |
1 3
|
syl |
|
| 5 |
|
eqid |
|
| 6 |
5
|
subrgnzr |
|
| 7 |
4 2 6
|
syl2anc |
|
| 8 |
1
|
ad3antrrr |
|
| 9 |
|
eqid |
|
| 10 |
9
|
subrgss |
|
| 11 |
2 10
|
syl |
|
| 12 |
11
|
ad3antrrr |
|
| 13 |
|
simpllr |
|
| 14 |
5 9
|
ressbas2 |
|
| 15 |
11 14
|
syl |
|
| 16 |
15
|
ad3antrrr |
|
| 17 |
13 16
|
eleqtrrd |
|
| 18 |
12 17
|
sseldd |
|
| 19 |
|
simplr |
|
| 20 |
19 16
|
eleqtrrd |
|
| 21 |
12 20
|
sseldd |
|
| 22 |
|
simpr |
|
| 23 |
2
|
elexd |
|
| 24 |
|
eqid |
|
| 25 |
5 24
|
ressmulr |
|
| 26 |
23 25
|
syl |
|
| 27 |
26
|
oveqd |
|
| 28 |
27
|
ad3antrrr |
|
| 29 |
|
subrgrcl |
|
| 30 |
|
ringmnd |
|
| 31 |
2 29 30
|
3syl |
|
| 32 |
|
subrgsubg |
|
| 33 |
|
eqid |
|
| 34 |
33
|
subg0cl |
|
| 35 |
2 32 34
|
3syl |
|
| 36 |
5 9 33
|
ress0g |
|
| 37 |
31 35 11 36
|
syl3anc |
|
| 38 |
37
|
ad3antrrr |
|
| 39 |
22 28 38
|
3eqtr4d |
|
| 40 |
9 24 33
|
domneq0 |
|
| 41 |
40
|
biimpa |
|
| 42 |
8 18 21 39 41
|
syl31anc |
|
| 43 |
38
|
eqeq2d |
|
| 44 |
38
|
eqeq2d |
|
| 45 |
43 44
|
orbi12d |
|
| 46 |
42 45
|
mpbid |
|
| 47 |
46
|
ex |
|
| 48 |
47
|
anasss |
|
| 49 |
48
|
ralrimivva |
|
| 50 |
|
eqid |
|
| 51 |
|
eqid |
|
| 52 |
|
eqid |
|
| 53 |
50 51 52
|
isdomn |
|
| 54 |
7 49 53
|
sylanbrc |
|