Description: Obsolete version of sucdom as of 4-Dec-2024. (Contributed by Mario Carneiro, 12-Jan-2013) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sucdomOLD | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ≺ 𝐵 ↔ suc 𝐴 ≼ 𝐵 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sucdom2 | ⊢ ( 𝐴 ≺ 𝐵 → suc 𝐴 ≼ 𝐵 ) | |
| 2 | php4 | ⊢ ( 𝐴 ∈ ω → 𝐴 ≺ suc 𝐴 ) | |
| 3 | sdomdomtr | ⊢ ( ( 𝐴 ≺ suc 𝐴 ∧ suc 𝐴 ≼ 𝐵 ) → 𝐴 ≺ 𝐵 ) | |
| 4 | 3 | ex | ⊢ ( 𝐴 ≺ suc 𝐴 → ( suc 𝐴 ≼ 𝐵 → 𝐴 ≺ 𝐵 ) ) | 
| 5 | 2 4 | syl | ⊢ ( 𝐴 ∈ ω → ( suc 𝐴 ≼ 𝐵 → 𝐴 ≺ 𝐵 ) ) | 
| 6 | 1 5 | impbid2 | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ≺ 𝐵 ↔ suc 𝐴 ≼ 𝐵 ) ) |