Step |
Hyp |
Ref |
Expression |
1 |
|
dftr2 |
⊢ ( Tr suc 𝐴 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) |
2 |
|
sssucid |
⊢ 𝐴 ⊆ suc 𝐴 |
3 |
|
idn1 |
⊢ ( Tr 𝐴 ▶ Tr 𝐴 ) |
4 |
|
idn2 |
⊢ ( Tr 𝐴 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ▶ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ) |
5 |
|
simpl |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ 𝑦 ) |
6 |
4 5
|
e2 |
⊢ ( Tr 𝐴 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ▶ 𝑧 ∈ 𝑦 ) |
7 |
|
idn3 |
⊢ ( Tr 𝐴 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) , 𝑦 ∈ 𝐴 ▶ 𝑦 ∈ 𝐴 ) |
8 |
|
trel |
⊢ ( Tr 𝐴 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) |
9 |
8
|
expd |
⊢ ( Tr 𝐴 → ( 𝑧 ∈ 𝑦 → ( 𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ) ) |
10 |
3 6 7 9
|
e123 |
⊢ ( Tr 𝐴 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) , 𝑦 ∈ 𝐴 ▶ 𝑧 ∈ 𝐴 ) |
11 |
|
ssel |
⊢ ( 𝐴 ⊆ suc 𝐴 → ( 𝑧 ∈ 𝐴 → 𝑧 ∈ suc 𝐴 ) ) |
12 |
2 10 11
|
e03 |
⊢ ( Tr 𝐴 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) , 𝑦 ∈ 𝐴 ▶ 𝑧 ∈ suc 𝐴 ) |
13 |
12
|
in3 |
⊢ ( Tr 𝐴 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ▶ ( 𝑦 ∈ 𝐴 → 𝑧 ∈ suc 𝐴 ) ) |
14 |
|
idn3 |
⊢ ( Tr 𝐴 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) , 𝑦 = 𝐴 ▶ 𝑦 = 𝐴 ) |
15 |
|
eleq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝐴 ) ) |
16 |
15
|
biimpcd |
⊢ ( 𝑧 ∈ 𝑦 → ( 𝑦 = 𝐴 → 𝑧 ∈ 𝐴 ) ) |
17 |
6 14 16
|
e23 |
⊢ ( Tr 𝐴 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) , 𝑦 = 𝐴 ▶ 𝑧 ∈ 𝐴 ) |
18 |
2 17 11
|
e03 |
⊢ ( Tr 𝐴 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) , 𝑦 = 𝐴 ▶ 𝑧 ∈ suc 𝐴 ) |
19 |
18
|
in3 |
⊢ ( Tr 𝐴 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ▶ ( 𝑦 = 𝐴 → 𝑧 ∈ suc 𝐴 ) ) |
20 |
|
simpr |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑦 ∈ suc 𝐴 ) |
21 |
4 20
|
e2 |
⊢ ( Tr 𝐴 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ▶ 𝑦 ∈ suc 𝐴 ) |
22 |
|
elsuci |
⊢ ( 𝑦 ∈ suc 𝐴 → ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) |
23 |
21 22
|
e2 |
⊢ ( Tr 𝐴 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ▶ ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) |
24 |
|
jao |
⊢ ( ( 𝑦 ∈ 𝐴 → 𝑧 ∈ suc 𝐴 ) → ( ( 𝑦 = 𝐴 → 𝑧 ∈ suc 𝐴 ) → ( ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) ) |
25 |
13 19 23 24
|
e222 |
⊢ ( Tr 𝐴 , ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) ▶ 𝑧 ∈ suc 𝐴 ) |
26 |
25
|
in2 |
⊢ ( Tr 𝐴 ▶ ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) |
27 |
26
|
gen12 |
⊢ ( Tr 𝐴 ▶ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) |
28 |
|
biimpr |
⊢ ( ( Tr suc 𝐴 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) → ( ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) → Tr suc 𝐴 ) ) |
29 |
1 27 28
|
e01 |
⊢ ( Tr 𝐴 ▶ Tr suc 𝐴 ) |
30 |
29
|
in1 |
⊢ ( Tr 𝐴 → Tr suc 𝐴 ) |