Metamath Proof Explorer


Theorem suctrALT2VD

Description: Virtual deduction proof of suctrALT2 . (Contributed by Alan Sare, 11-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion suctrALT2VD ( Tr 𝐴 → Tr suc 𝐴 )

Proof

Step Hyp Ref Expression
1 dftr2 ( Tr suc 𝐴 ↔ ∀ 𝑧𝑦 ( ( 𝑧𝑦𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) )
2 sssucid 𝐴 ⊆ suc 𝐴
3 idn1 (    Tr 𝐴    ▶    Tr 𝐴    )
4 idn2 (    Tr 𝐴    ,    ( 𝑧𝑦𝑦 ∈ suc 𝐴 )    ▶    ( 𝑧𝑦𝑦 ∈ suc 𝐴 )    )
5 simpl ( ( 𝑧𝑦𝑦 ∈ suc 𝐴 ) → 𝑧𝑦 )
6 4 5 e2 (    Tr 𝐴    ,    ( 𝑧𝑦𝑦 ∈ suc 𝐴 )    ▶    𝑧𝑦    )
7 idn3 (    Tr 𝐴    ,    ( 𝑧𝑦𝑦 ∈ suc 𝐴 )    ,    𝑦𝐴    ▶    𝑦𝐴    )
8 trel ( Tr 𝐴 → ( ( 𝑧𝑦𝑦𝐴 ) → 𝑧𝐴 ) )
9 8 expd ( Tr 𝐴 → ( 𝑧𝑦 → ( 𝑦𝐴𝑧𝐴 ) ) )
10 3 6 7 9 e123 (    Tr 𝐴    ,    ( 𝑧𝑦𝑦 ∈ suc 𝐴 )    ,    𝑦𝐴    ▶    𝑧𝐴    )
11 ssel ( 𝐴 ⊆ suc 𝐴 → ( 𝑧𝐴𝑧 ∈ suc 𝐴 ) )
12 2 10 11 e03 (    Tr 𝐴    ,    ( 𝑧𝑦𝑦 ∈ suc 𝐴 )    ,    𝑦𝐴    ▶    𝑧 ∈ suc 𝐴    )
13 12 in3 (    Tr 𝐴    ,    ( 𝑧𝑦𝑦 ∈ suc 𝐴 )    ▶    ( 𝑦𝐴𝑧 ∈ suc 𝐴 )    )
14 idn3 (    Tr 𝐴    ,    ( 𝑧𝑦𝑦 ∈ suc 𝐴 )    ,    𝑦 = 𝐴    ▶    𝑦 = 𝐴    )
15 eleq2 ( 𝑦 = 𝐴 → ( 𝑧𝑦𝑧𝐴 ) )
16 15 biimpcd ( 𝑧𝑦 → ( 𝑦 = 𝐴𝑧𝐴 ) )
17 6 14 16 e23 (    Tr 𝐴    ,    ( 𝑧𝑦𝑦 ∈ suc 𝐴 )    ,    𝑦 = 𝐴    ▶    𝑧𝐴    )
18 2 17 11 e03 (    Tr 𝐴    ,    ( 𝑧𝑦𝑦 ∈ suc 𝐴 )    ,    𝑦 = 𝐴    ▶    𝑧 ∈ suc 𝐴    )
19 18 in3 (    Tr 𝐴    ,    ( 𝑧𝑦𝑦 ∈ suc 𝐴 )    ▶    ( 𝑦 = 𝐴𝑧 ∈ suc 𝐴 )    )
20 simpr ( ( 𝑧𝑦𝑦 ∈ suc 𝐴 ) → 𝑦 ∈ suc 𝐴 )
21 4 20 e2 (    Tr 𝐴    ,    ( 𝑧𝑦𝑦 ∈ suc 𝐴 )    ▶    𝑦 ∈ suc 𝐴    )
22 elsuci ( 𝑦 ∈ suc 𝐴 → ( 𝑦𝐴𝑦 = 𝐴 ) )
23 21 22 e2 (    Tr 𝐴    ,    ( 𝑧𝑦𝑦 ∈ suc 𝐴 )    ▶    ( 𝑦𝐴𝑦 = 𝐴 )    )
24 jao ( ( 𝑦𝐴𝑧 ∈ suc 𝐴 ) → ( ( 𝑦 = 𝐴𝑧 ∈ suc 𝐴 ) → ( ( 𝑦𝐴𝑦 = 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) )
25 13 19 23 24 e222 (    Tr 𝐴    ,    ( 𝑧𝑦𝑦 ∈ suc 𝐴 )    ▶    𝑧 ∈ suc 𝐴    )
26 25 in2 (    Tr 𝐴    ▶    ( ( 𝑧𝑦𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 )    )
27 26 gen12 (    Tr 𝐴    ▶   𝑧𝑦 ( ( 𝑧𝑦𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 )    )
28 biimpr ( ( Tr suc 𝐴 ↔ ∀ 𝑧𝑦 ( ( 𝑧𝑦𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) → ( ∀ 𝑧𝑦 ( ( 𝑧𝑦𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) → Tr suc 𝐴 ) )
29 1 27 28 e01 (    Tr 𝐴    ▶    Tr suc 𝐴    )
30 29 in1 ( Tr 𝐴 → Tr suc 𝐴 )