Metamath Proof Explorer


Theorem suctrALT2

Description: Virtual deduction proof of suctr . The sucessor of a transitive class is transitive. This proof was generated automatically from the virtual deduction proof suctrALT2VD using the tools command file translate__without__overwriting__minimize__excluding__duplicates.cmd . (Contributed by Alan Sare, 11-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion suctrALT2 ( Tr 𝐴 → Tr suc 𝐴 )

Proof

Step Hyp Ref Expression
1 sssucid 𝐴 ⊆ suc 𝐴
2 trel ( Tr 𝐴 → ( ( 𝑧𝑦𝑦𝐴 ) → 𝑧𝐴 ) )
3 2 expd ( Tr 𝐴 → ( 𝑧𝑦 → ( 𝑦𝐴𝑧𝐴 ) ) )
4 3 adantrd ( Tr 𝐴 → ( ( 𝑧𝑦𝑦 ∈ suc 𝐴 ) → ( 𝑦𝐴𝑧𝐴 ) ) )
5 ssel ( 𝐴 ⊆ suc 𝐴 → ( 𝑧𝐴𝑧 ∈ suc 𝐴 ) )
6 1 4 5 ee03 ( Tr 𝐴 → ( ( 𝑧𝑦𝑦 ∈ suc 𝐴 ) → ( 𝑦𝐴𝑧 ∈ suc 𝐴 ) ) )
7 simpl ( ( 𝑧𝑦𝑦 ∈ suc 𝐴 ) → 𝑧𝑦 )
8 7 a1i ( Tr 𝐴 → ( ( 𝑧𝑦𝑦 ∈ suc 𝐴 ) → 𝑧𝑦 ) )
9 eleq2 ( 𝑦 = 𝐴 → ( 𝑧𝑦𝑧𝐴 ) )
10 9 biimpcd ( 𝑧𝑦 → ( 𝑦 = 𝐴𝑧𝐴 ) )
11 8 10 syl6 ( Tr 𝐴 → ( ( 𝑧𝑦𝑦 ∈ suc 𝐴 ) → ( 𝑦 = 𝐴𝑧𝐴 ) ) )
12 1 11 5 ee03 ( Tr 𝐴 → ( ( 𝑧𝑦𝑦 ∈ suc 𝐴 ) → ( 𝑦 = 𝐴𝑧 ∈ suc 𝐴 ) ) )
13 simpr ( ( 𝑧𝑦𝑦 ∈ suc 𝐴 ) → 𝑦 ∈ suc 𝐴 )
14 13 a1i ( Tr 𝐴 → ( ( 𝑧𝑦𝑦 ∈ suc 𝐴 ) → 𝑦 ∈ suc 𝐴 ) )
15 elsuci ( 𝑦 ∈ suc 𝐴 → ( 𝑦𝐴𝑦 = 𝐴 ) )
16 14 15 syl6 ( Tr 𝐴 → ( ( 𝑧𝑦𝑦 ∈ suc 𝐴 ) → ( 𝑦𝐴𝑦 = 𝐴 ) ) )
17 jao ( ( 𝑦𝐴𝑧 ∈ suc 𝐴 ) → ( ( 𝑦 = 𝐴𝑧 ∈ suc 𝐴 ) → ( ( 𝑦𝐴𝑦 = 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) )
18 6 12 16 17 ee222 ( Tr 𝐴 → ( ( 𝑧𝑦𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) )
19 18 alrimivv ( Tr 𝐴 → ∀ 𝑧𝑦 ( ( 𝑧𝑦𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) )
20 dftr2 ( Tr suc 𝐴 ↔ ∀ 𝑧𝑦 ( ( 𝑧𝑦𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) )
21 19 20 sylibr ( Tr 𝐴 → Tr suc 𝐴 )