Metamath Proof Explorer


Theorem suctrALT2

Description: Virtual deduction proof of suctr . The sucessor of a transitive class is transitive. This proof was generated automatically from the virtual deduction proof suctrALT2VD using the tools command file translate__without__overwriting__minimize__excluding__duplicates.cmd . (Contributed by Alan Sare, 11-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion suctrALT2 TrATrsucA

Proof

Step Hyp Ref Expression
1 sssucid AsucA
2 trel TrAzyyAzA
3 2 expd TrAzyyAzA
4 3 adantrd TrAzyysucAyAzA
5 ssel AsucAzAzsucA
6 1 4 5 ee03 TrAzyysucAyAzsucA
7 simpl zyysucAzy
8 7 a1i TrAzyysucAzy
9 eleq2 y=AzyzA
10 9 biimpcd zyy=AzA
11 8 10 syl6 TrAzyysucAy=AzA
12 1 11 5 ee03 TrAzyysucAy=AzsucA
13 simpr zyysucAysucA
14 13 a1i TrAzyysucAysucA
15 elsuci ysucAyAy=A
16 14 15 syl6 TrAzyysucAyAy=A
17 jao yAzsucAy=AzsucAyAy=AzsucA
18 6 12 16 17 ee222 TrAzyysucAzsucA
19 18 alrimivv TrAzyzyysucAzsucA
20 dftr2 TrsucAzyzyysucAzsucA
21 19 20 sylibr TrATrsucA