Metamath Proof Explorer


Theorem elex2VD

Description: Virtual deduction proof of elex2 . (Contributed by Alan Sare, 25-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion elex2VD A B x x B

Proof

Step Hyp Ref Expression
1 idn1 A B A B
2 idn2 A B , x = A x = A
3 eleq1a A B x = A x B
4 1 2 3 e12 A B , x = A x B
5 4 in2 A B x = A x B
6 5 gen11 A B x x = A x B
7 elisset A B x x = A
8 1 7 e1a A B x x = A
9 exim x x = A x B x x = A x x B
10 6 8 9 e11 A B x x B
11 10 in1 A B x x B