Metamath Proof Explorer


Theorem elex2VD

Description: Virtual deduction proof of elex2 . (Contributed by Alan Sare, 25-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion elex2VD
|- ( A e. B -> E. x x e. B )

Proof

Step Hyp Ref Expression
1 idn1
 |-  (. A e. B ->. A e. B ).
2 idn2
 |-  (. A e. B ,. x = A ->. x = A ).
3 eleq1a
 |-  ( A e. B -> ( x = A -> x e. B ) )
4 1 2 3 e12
 |-  (. A e. B ,. x = A ->. x e. B ).
5 4 in2
 |-  (. A e. B ->. ( x = A -> x e. B ) ).
6 5 gen11
 |-  (. A e. B ->. A. x ( x = A -> x e. B ) ).
7 elisset
 |-  ( A e. B -> E. x x = A )
8 1 7 e1a
 |-  (. A e. B ->. E. x x = A ).
9 exim
 |-  ( A. x ( x = A -> x e. B ) -> ( E. x x = A -> E. x x e. B ) )
10 6 8 9 e11
 |-  (. A e. B ->. E. x x e. B ).
11 10 in1
 |-  ( A e. B -> E. x x e. B )