Description: Virtual deduction proof of elex2 . (Contributed by Alan Sare, 25-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | elex2VD | ⊢ ( 𝐴 ∈ 𝐵 → ∃ 𝑥 𝑥 ∈ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idn1 | ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 ) | |
2 | idn2 | ⊢ ( 𝐴 ∈ 𝐵 , 𝑥 = 𝐴 ▶ 𝑥 = 𝐴 ) | |
3 | eleq1a | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
4 | 1 2 3 | e12 | ⊢ ( 𝐴 ∈ 𝐵 , 𝑥 = 𝐴 ▶ 𝑥 ∈ 𝐵 ) |
5 | 4 | in2 | ⊢ ( 𝐴 ∈ 𝐵 ▶ ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) |
6 | 5 | gen11 | ⊢ ( 𝐴 ∈ 𝐵 ▶ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) |
7 | elisset | ⊢ ( 𝐴 ∈ 𝐵 → ∃ 𝑥 𝑥 = 𝐴 ) | |
8 | 1 7 | e1a | ⊢ ( 𝐴 ∈ 𝐵 ▶ ∃ 𝑥 𝑥 = 𝐴 ) |
9 | exim | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) → ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 𝑥 ∈ 𝐵 ) ) | |
10 | 6 8 9 | e11 | ⊢ ( 𝐴 ∈ 𝐵 ▶ ∃ 𝑥 𝑥 ∈ 𝐵 ) |
11 | 10 | in1 | ⊢ ( 𝐴 ∈ 𝐵 → ∃ 𝑥 𝑥 ∈ 𝐵 ) |