Metamath Proof Explorer


Theorem elex2VD

Description: Virtual deduction proof of elex2 . (Contributed by Alan Sare, 25-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion elex2VD ( 𝐴𝐵 → ∃ 𝑥 𝑥𝐵 )

Proof

Step Hyp Ref Expression
1 idn1 (    𝐴𝐵    ▶    𝐴𝐵    )
2 idn2 (    𝐴𝐵    ,    𝑥 = 𝐴    ▶    𝑥 = 𝐴    )
3 eleq1a ( 𝐴𝐵 → ( 𝑥 = 𝐴𝑥𝐵 ) )
4 1 2 3 e12 (    𝐴𝐵    ,    𝑥 = 𝐴    ▶    𝑥𝐵    )
5 4 in2 (    𝐴𝐵    ▶    ( 𝑥 = 𝐴𝑥𝐵 )    )
6 5 gen11 (    𝐴𝐵    ▶   𝑥 ( 𝑥 = 𝐴𝑥𝐵 )    )
7 elisset ( 𝐴𝐵 → ∃ 𝑥 𝑥 = 𝐴 )
8 1 7 e1a (    𝐴𝐵    ▶   𝑥 𝑥 = 𝐴    )
9 exim ( ∀ 𝑥 ( 𝑥 = 𝐴𝑥𝐵 ) → ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 𝑥𝐵 ) )
10 6 8 9 e11 (    𝐴𝐵    ▶   𝑥 𝑥𝐵    )
11 10 in1 ( 𝐴𝐵 → ∃ 𝑥 𝑥𝐵 )