Metamath Proof Explorer


Theorem suctrALT2

Description: Virtual deduction proof of suctr . The sucessor of a transitive class is transitive. This proof was generated automatically from the virtual deduction proof suctrALT2VD using the tools command file translate__without__overwriting__minimize__excluding__duplicates.cmd . (Contributed by Alan Sare, 11-Sep-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion suctrALT2
|- ( Tr A -> Tr suc A )

Proof

Step Hyp Ref Expression
1 sssucid
 |-  A C_ suc A
2 trel
 |-  ( Tr A -> ( ( z e. y /\ y e. A ) -> z e. A ) )
3 2 expd
 |-  ( Tr A -> ( z e. y -> ( y e. A -> z e. A ) ) )
4 3 adantrd
 |-  ( Tr A -> ( ( z e. y /\ y e. suc A ) -> ( y e. A -> z e. A ) ) )
5 ssel
 |-  ( A C_ suc A -> ( z e. A -> z e. suc A ) )
6 1 4 5 ee03
 |-  ( Tr A -> ( ( z e. y /\ y e. suc A ) -> ( y e. A -> z e. suc A ) ) )
7 simpl
 |-  ( ( z e. y /\ y e. suc A ) -> z e. y )
8 7 a1i
 |-  ( Tr A -> ( ( z e. y /\ y e. suc A ) -> z e. y ) )
9 eleq2
 |-  ( y = A -> ( z e. y <-> z e. A ) )
10 9 biimpcd
 |-  ( z e. y -> ( y = A -> z e. A ) )
11 8 10 syl6
 |-  ( Tr A -> ( ( z e. y /\ y e. suc A ) -> ( y = A -> z e. A ) ) )
12 1 11 5 ee03
 |-  ( Tr A -> ( ( z e. y /\ y e. suc A ) -> ( y = A -> z e. suc A ) ) )
13 simpr
 |-  ( ( z e. y /\ y e. suc A ) -> y e. suc A )
14 13 a1i
 |-  ( Tr A -> ( ( z e. y /\ y e. suc A ) -> y e. suc A ) )
15 elsuci
 |-  ( y e. suc A -> ( y e. A \/ y = A ) )
16 14 15 syl6
 |-  ( Tr A -> ( ( z e. y /\ y e. suc A ) -> ( y e. A \/ y = A ) ) )
17 jao
 |-  ( ( y e. A -> z e. suc A ) -> ( ( y = A -> z e. suc A ) -> ( ( y e. A \/ y = A ) -> z e. suc A ) ) )
18 6 12 16 17 ee222
 |-  ( Tr A -> ( ( z e. y /\ y e. suc A ) -> z e. suc A ) )
19 18 alrimivv
 |-  ( Tr A -> A. z A. y ( ( z e. y /\ y e. suc A ) -> z e. suc A ) )
20 dftr2
 |-  ( Tr suc A <-> A. z A. y ( ( z e. y /\ y e. suc A ) -> z e. suc A ) )
21 19 20 sylibr
 |-  ( Tr A -> Tr suc A )