| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elsuci | ⊢ ( 𝑦  ∈  suc  𝐴  →  ( 𝑦  ∈  𝐴  ∨  𝑦  =  𝐴 ) ) | 
						
							| 2 |  | trel | ⊢ ( Tr  𝐴  →  ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐴 ) ) | 
						
							| 3 | 2 | expdimp | ⊢ ( ( Tr  𝐴  ∧  𝑧  ∈  𝑦 )  →  ( 𝑦  ∈  𝐴  →  𝑧  ∈  𝐴 ) ) | 
						
							| 4 |  | eleq2 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑧  ∈  𝑦  ↔  𝑧  ∈  𝐴 ) ) | 
						
							| 5 | 4 | biimpcd | ⊢ ( 𝑧  ∈  𝑦  →  ( 𝑦  =  𝐴  →  𝑧  ∈  𝐴 ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( Tr  𝐴  ∧  𝑧  ∈  𝑦 )  →  ( 𝑦  =  𝐴  →  𝑧  ∈  𝐴 ) ) | 
						
							| 7 | 3 6 | jaod | ⊢ ( ( Tr  𝐴  ∧  𝑧  ∈  𝑦 )  →  ( ( 𝑦  ∈  𝐴  ∨  𝑦  =  𝐴 )  →  𝑧  ∈  𝐴 ) ) | 
						
							| 8 | 1 7 | syl5 | ⊢ ( ( Tr  𝐴  ∧  𝑧  ∈  𝑦 )  →  ( 𝑦  ∈  suc  𝐴  →  𝑧  ∈  𝐴 ) ) | 
						
							| 9 | 8 | expimpd | ⊢ ( Tr  𝐴  →  ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  suc  𝐴 )  →  𝑧  ∈  𝐴 ) ) | 
						
							| 10 |  | elelsuc | ⊢ ( 𝑧  ∈  𝐴  →  𝑧  ∈  suc  𝐴 ) | 
						
							| 11 | 9 10 | syl6 | ⊢ ( Tr  𝐴  →  ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  suc  𝐴 )  →  𝑧  ∈  suc  𝐴 ) ) | 
						
							| 12 | 11 | alrimivv | ⊢ ( Tr  𝐴  →  ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  suc  𝐴 )  →  𝑧  ∈  suc  𝐴 ) ) | 
						
							| 13 |  | dftr2 | ⊢ ( Tr  suc  𝐴  ↔  ∀ 𝑧 ∀ 𝑦 ( ( 𝑧  ∈  𝑦  ∧  𝑦  ∈  suc  𝐴 )  →  𝑧  ∈  suc  𝐴 ) ) | 
						
							| 14 | 12 13 | sylibr | ⊢ ( Tr  𝐴  →  Tr  suc  𝐴 ) |