Metamath Proof Explorer


Theorem suctr

Description: The successor of a transitive class is transitive. (Contributed by Alan Sare, 11-Apr-2009) (Proof shortened by JJ, 24-Sep-2021)

Ref Expression
Assertion suctr ( Tr 𝐴 → Tr suc 𝐴 )

Proof

Step Hyp Ref Expression
1 elsuci ( 𝑦 ∈ suc 𝐴 → ( 𝑦𝐴𝑦 = 𝐴 ) )
2 trel ( Tr 𝐴 → ( ( 𝑧𝑦𝑦𝐴 ) → 𝑧𝐴 ) )
3 2 expdimp ( ( Tr 𝐴𝑧𝑦 ) → ( 𝑦𝐴𝑧𝐴 ) )
4 eleq2 ( 𝑦 = 𝐴 → ( 𝑧𝑦𝑧𝐴 ) )
5 4 biimpcd ( 𝑧𝑦 → ( 𝑦 = 𝐴𝑧𝐴 ) )
6 5 adantl ( ( Tr 𝐴𝑧𝑦 ) → ( 𝑦 = 𝐴𝑧𝐴 ) )
7 3 6 jaod ( ( Tr 𝐴𝑧𝑦 ) → ( ( 𝑦𝐴𝑦 = 𝐴 ) → 𝑧𝐴 ) )
8 1 7 syl5 ( ( Tr 𝐴𝑧𝑦 ) → ( 𝑦 ∈ suc 𝐴𝑧𝐴 ) )
9 8 expimpd ( Tr 𝐴 → ( ( 𝑧𝑦𝑦 ∈ suc 𝐴 ) → 𝑧𝐴 ) )
10 elelsuc ( 𝑧𝐴𝑧 ∈ suc 𝐴 )
11 9 10 syl6 ( Tr 𝐴 → ( ( 𝑧𝑦𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) )
12 11 alrimivv ( Tr 𝐴 → ∀ 𝑧𝑦 ( ( 𝑧𝑦𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) )
13 dftr2 ( Tr suc 𝐴 ↔ ∀ 𝑧𝑦 ( ( 𝑧𝑦𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) )
14 12 13 sylibr ( Tr 𝐴 → Tr suc 𝐴 )