| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elsuci |
⊢ ( 𝑦 ∈ suc 𝐴 → ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) |
| 2 |
|
trel |
⊢ ( Tr 𝐴 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) ) |
| 3 |
2
|
expdimp |
⊢ ( ( Tr 𝐴 ∧ 𝑧 ∈ 𝑦 ) → ( 𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴 ) ) |
| 4 |
|
eleq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝐴 ) ) |
| 5 |
4
|
biimpcd |
⊢ ( 𝑧 ∈ 𝑦 → ( 𝑦 = 𝐴 → 𝑧 ∈ 𝐴 ) ) |
| 6 |
5
|
adantl |
⊢ ( ( Tr 𝐴 ∧ 𝑧 ∈ 𝑦 ) → ( 𝑦 = 𝐴 → 𝑧 ∈ 𝐴 ) ) |
| 7 |
3 6
|
jaod |
⊢ ( ( Tr 𝐴 ∧ 𝑧 ∈ 𝑦 ) → ( ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) → 𝑧 ∈ 𝐴 ) ) |
| 8 |
1 7
|
syl5 |
⊢ ( ( Tr 𝐴 ∧ 𝑧 ∈ 𝑦 ) → ( 𝑦 ∈ suc 𝐴 → 𝑧 ∈ 𝐴 ) ) |
| 9 |
8
|
expimpd |
⊢ ( Tr 𝐴 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ 𝐴 ) ) |
| 10 |
|
elelsuc |
⊢ ( 𝑧 ∈ 𝐴 → 𝑧 ∈ suc 𝐴 ) |
| 11 |
9 10
|
syl6 |
⊢ ( Tr 𝐴 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) |
| 12 |
11
|
alrimivv |
⊢ ( Tr 𝐴 → ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) |
| 13 |
|
dftr2 |
⊢ ( Tr suc 𝐴 ↔ ∀ 𝑧 ∀ 𝑦 ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ suc 𝐴 ) → 𝑧 ∈ suc 𝐴 ) ) |
| 14 |
12 13
|
sylibr |
⊢ ( Tr 𝐴 → Tr suc 𝐴 ) |