Step |
Hyp |
Ref |
Expression |
1 |
|
sup0riota |
⊢ ( 𝑅 Or 𝐴 → sup ( ∅ , 𝐴 , 𝑅 ) = ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) ) |
2 |
1
|
3ad2ant1 |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑋 ) ∧ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) → sup ( ∅ , 𝐴 , 𝑅 ) = ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) ) |
3 |
|
simp2r |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑋 ) ∧ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) → ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑋 ) |
4 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑋 ) → 𝑋 ∈ 𝐴 ) |
5 |
4
|
anim1i |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑋 ) ∧ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) → ( 𝑋 ∈ 𝐴 ∧ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) ) |
6 |
5
|
3adant1 |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑋 ) ∧ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) → ( 𝑋 ∈ 𝐴 ∧ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) ) |
7 |
|
breq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 𝑋 ) ) |
8 |
7
|
notbid |
⊢ ( 𝑥 = 𝑋 → ( ¬ 𝑦 𝑅 𝑥 ↔ ¬ 𝑦 𝑅 𝑋 ) ) |
9 |
8
|
ralbidv |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑋 ) ) |
10 |
9
|
riota2 |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑋 ↔ ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) = 𝑋 ) ) |
11 |
6 10
|
syl |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑋 ) ∧ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) → ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑋 ↔ ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) = 𝑋 ) ) |
12 |
3 11
|
mpbid |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑋 ) ∧ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) → ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) = 𝑋 ) |
13 |
2 12
|
eqtrd |
⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑋 ) ∧ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) → sup ( ∅ , 𝐴 , 𝑅 ) = 𝑋 ) |