Metamath Proof Explorer


Theorem sup0

Description: The supremum of an empty set under a base set which has a unique smallest element is the smallest element of the base set. (Contributed by AV, 4-Sep-2020)

Ref Expression
Assertion sup0 ( ( 𝑅 Or 𝐴 ∧ ( 𝑋𝐴 ∧ ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑋 ) ∧ ∃! 𝑥𝐴𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ) → sup ( ∅ , 𝐴 , 𝑅 ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 sup0riota ( 𝑅 Or 𝐴 → sup ( ∅ , 𝐴 , 𝑅 ) = ( 𝑥𝐴𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ) )
2 1 3ad2ant1 ( ( 𝑅 Or 𝐴 ∧ ( 𝑋𝐴 ∧ ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑋 ) ∧ ∃! 𝑥𝐴𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ) → sup ( ∅ , 𝐴 , 𝑅 ) = ( 𝑥𝐴𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ) )
3 simp2r ( ( 𝑅 Or 𝐴 ∧ ( 𝑋𝐴 ∧ ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑋 ) ∧ ∃! 𝑥𝐴𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ) → ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑋 )
4 simpl ( ( 𝑋𝐴 ∧ ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑋 ) → 𝑋𝐴 )
5 4 anim1i ( ( ( 𝑋𝐴 ∧ ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑋 ) ∧ ∃! 𝑥𝐴𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ) → ( 𝑋𝐴 ∧ ∃! 𝑥𝐴𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ) )
6 5 3adant1 ( ( 𝑅 Or 𝐴 ∧ ( 𝑋𝐴 ∧ ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑋 ) ∧ ∃! 𝑥𝐴𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ) → ( 𝑋𝐴 ∧ ∃! 𝑥𝐴𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ) )
7 breq2 ( 𝑥 = 𝑋 → ( 𝑦 𝑅 𝑥𝑦 𝑅 𝑋 ) )
8 7 notbid ( 𝑥 = 𝑋 → ( ¬ 𝑦 𝑅 𝑥 ↔ ¬ 𝑦 𝑅 𝑋 ) )
9 8 ralbidv ( 𝑥 = 𝑋 → ( ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ↔ ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑋 ) )
10 9 riota2 ( ( 𝑋𝐴 ∧ ∃! 𝑥𝐴𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ) → ( ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑋 ↔ ( 𝑥𝐴𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ) = 𝑋 ) )
11 6 10 syl ( ( 𝑅 Or 𝐴 ∧ ( 𝑋𝐴 ∧ ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑋 ) ∧ ∃! 𝑥𝐴𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ) → ( ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑋 ↔ ( 𝑥𝐴𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ) = 𝑋 ) )
12 3 11 mpbid ( ( 𝑅 Or 𝐴 ∧ ( 𝑋𝐴 ∧ ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑋 ) ∧ ∃! 𝑥𝐴𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ) → ( 𝑥𝐴𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ) = 𝑋 )
13 2 12 eqtrd ( ( 𝑅 Or 𝐴 ∧ ( 𝑋𝐴 ∧ ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑋 ) ∧ ∃! 𝑥𝐴𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ) → sup ( ∅ , 𝐴 , 𝑅 ) = 𝑋 )