Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( 𝑅 Or 𝐴 → 𝑅 Or 𝐴 ) |
2 |
1
|
supval2 |
⊢ ( 𝑅 Or 𝐴 → sup ( ∅ , 𝐴 , 𝑅 ) = ( ℩ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ ∅ ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 ) ) ) ) |
3 |
|
ral0 |
⊢ ∀ 𝑦 ∈ ∅ ¬ 𝑥 𝑅 𝑦 |
4 |
3
|
biantrur |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 ) ↔ ( ∀ 𝑦 ∈ ∅ ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 ) ) ) |
5 |
|
rex0 |
⊢ ¬ ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 |
6 |
|
imnot |
⊢ ( ¬ ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 → ( ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 ) ↔ ¬ 𝑦 𝑅 𝑥 ) ) |
7 |
5 6
|
ax-mp |
⊢ ( ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 ) ↔ ¬ 𝑦 𝑅 𝑥 ) |
8 |
7
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 ) ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) |
9 |
4 8
|
bitr3i |
⊢ ( ( ∀ 𝑦 ∈ ∅ ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) |
10 |
9
|
a1i |
⊢ ( 𝑅 Or 𝐴 → ( ( ∀ 𝑦 ∈ ∅ ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) ) |
11 |
10
|
riotabidv |
⊢ ( 𝑅 Or 𝐴 → ( ℩ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ ∅ ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 ) ) ) = ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) ) |
12 |
2 11
|
eqtrd |
⊢ ( 𝑅 Or 𝐴 → sup ( ∅ , 𝐴 , 𝑅 ) = ( ℩ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 𝑅 𝑥 ) ) |