Metamath Proof Explorer


Theorem sup0riota

Description: The supremum of an empty set is the smallest element of the base set. (Contributed by AV, 4-Sep-2020)

Ref Expression
Assertion sup0riota ( 𝑅 Or 𝐴 → sup ( ∅ , 𝐴 , 𝑅 ) = ( 𝑥𝐴𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ) )

Proof

Step Hyp Ref Expression
1 id ( 𝑅 Or 𝐴𝑅 Or 𝐴 )
2 1 supval2 ( 𝑅 Or 𝐴 → sup ( ∅ , 𝐴 , 𝑅 ) = ( 𝑥𝐴 ( ∀ 𝑦 ∈ ∅ ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 ) ) ) )
3 ral0 𝑦 ∈ ∅ ¬ 𝑥 𝑅 𝑦
4 3 biantrur ( ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 ) ↔ ( ∀ 𝑦 ∈ ∅ ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 ) ) )
5 rex0 ¬ ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧
6 imnot ( ¬ ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 → ( ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 ) ↔ ¬ 𝑦 𝑅 𝑥 ) )
7 5 6 ax-mp ( ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 ) ↔ ¬ 𝑦 𝑅 𝑥 )
8 7 ralbii ( ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 ) ↔ ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑥 )
9 4 8 bitr3i ( ( ∀ 𝑦 ∈ ∅ ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 ) ) ↔ ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑥 )
10 9 a1i ( 𝑅 Or 𝐴 → ( ( ∀ 𝑦 ∈ ∅ ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 ) ) ↔ ∀ 𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ) )
11 10 riotabidv ( 𝑅 Or 𝐴 → ( 𝑥𝐴 ( ∀ 𝑦 ∈ ∅ ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ ∅ 𝑦 𝑅 𝑧 ) ) ) = ( 𝑥𝐴𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ) )
12 2 11 eqtrd ( 𝑅 Or 𝐴 → sup ( ∅ , 𝐴 , 𝑅 ) = ( 𝑥𝐴𝑦𝐴 ¬ 𝑦 𝑅 𝑥 ) )