Metamath Proof Explorer


Theorem sup00

Description: The supremum under an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020)

Ref Expression
Assertion sup00 sup ( 𝐵 , ∅ , 𝑅 ) = ∅

Proof

Step Hyp Ref Expression
1 df-sup sup ( 𝐵 , ∅ , 𝑅 ) = { 𝑥 ∈ ∅ ∣ ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ ∅ ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) }
2 rab0 { 𝑥 ∈ ∅ ∣ ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ ∅ ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) } = ∅
3 2 unieqi { 𝑥 ∈ ∅ ∣ ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ ∅ ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) } =
4 uni0 ∅ = ∅
5 1 3 4 3eqtri sup ( 𝐵 , ∅ , 𝑅 ) = ∅