Description: The supremum under an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | sup00 | ⊢ sup ( 𝐵 , ∅ , 𝑅 ) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sup | ⊢ sup ( 𝐵 , ∅ , 𝑅 ) = ∪ { 𝑥 ∈ ∅ ∣ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ ∅ ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) } | |
2 | rab0 | ⊢ { 𝑥 ∈ ∅ ∣ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ ∅ ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) } = ∅ | |
3 | 2 | unieqi | ⊢ ∪ { 𝑥 ∈ ∅ ∣ ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦 ∈ ∅ ( 𝑦 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 𝑅 𝑧 ) ) } = ∪ ∅ |
4 | uni0 | ⊢ ∪ ∅ = ∅ | |
5 | 1 3 4 | 3eqtri | ⊢ sup ( 𝐵 , ∅ , 𝑅 ) = ∅ |