Metamath Proof Explorer


Theorem suppvalfng

Description: The value of the operation constructing the support of a function with a given domain. This version of suppvalfn assumes F is a set rather than its domain X , avoiding ax-rep . (Contributed by SN, 5-Aug-2024)

Ref Expression
Assertion suppvalfng ( ( 𝐹 Fn 𝑋𝐹𝑉𝑍𝑊 ) → ( 𝐹 supp 𝑍 ) = { 𝑖𝑋 ∣ ( 𝐹𝑖 ) ≠ 𝑍 } )

Proof

Step Hyp Ref Expression
1 fnfun ( 𝐹 Fn 𝑋 → Fun 𝐹 )
2 suppval1 ( ( Fun 𝐹𝐹𝑉𝑍𝑊 ) → ( 𝐹 supp 𝑍 ) = { 𝑖 ∈ dom 𝐹 ∣ ( 𝐹𝑖 ) ≠ 𝑍 } )
3 1 2 syl3an1 ( ( 𝐹 Fn 𝑋𝐹𝑉𝑍𝑊 ) → ( 𝐹 supp 𝑍 ) = { 𝑖 ∈ dom 𝐹 ∣ ( 𝐹𝑖 ) ≠ 𝑍 } )
4 fndm ( 𝐹 Fn 𝑋 → dom 𝐹 = 𝑋 )
5 4 3ad2ant1 ( ( 𝐹 Fn 𝑋𝐹𝑉𝑍𝑊 ) → dom 𝐹 = 𝑋 )
6 5 rabeqdv ( ( 𝐹 Fn 𝑋𝐹𝑉𝑍𝑊 ) → { 𝑖 ∈ dom 𝐹 ∣ ( 𝐹𝑖 ) ≠ 𝑍 } = { 𝑖𝑋 ∣ ( 𝐹𝑖 ) ≠ 𝑍 } )
7 3 6 eqtrd ( ( 𝐹 Fn 𝑋𝐹𝑉𝑍𝑊 ) → ( 𝐹 supp 𝑍 ) = { 𝑖𝑋 ∣ ( 𝐹𝑖 ) ≠ 𝑍 } )