Step |
Hyp |
Ref |
Expression |
1 |
|
fnfun |
|- ( F Fn X -> Fun F ) |
2 |
|
suppval1 |
|- ( ( Fun F /\ F e. V /\ Z e. W ) -> ( F supp Z ) = { i e. dom F | ( F ` i ) =/= Z } ) |
3 |
1 2
|
syl3an1 |
|- ( ( F Fn X /\ F e. V /\ Z e. W ) -> ( F supp Z ) = { i e. dom F | ( F ` i ) =/= Z } ) |
4 |
|
fndm |
|- ( F Fn X -> dom F = X ) |
5 |
4
|
3ad2ant1 |
|- ( ( F Fn X /\ F e. V /\ Z e. W ) -> dom F = X ) |
6 |
5
|
rabeqdv |
|- ( ( F Fn X /\ F e. V /\ Z e. W ) -> { i e. dom F | ( F ` i ) =/= Z } = { i e. X | ( F ` i ) =/= Z } ) |
7 |
3 6
|
eqtrd |
|- ( ( F Fn X /\ F e. V /\ Z e. W ) -> ( F supp Z ) = { i e. X | ( F ` i ) =/= Z } ) |