Description: Closure of supremum of a nonempty bounded set of reals. (Contributed by NM, 12-Sep-1999)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sup3i.1 | ⊢ ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) | |
Assertion | suprclii | ⊢ sup ( 𝐴 , ℝ , < ) ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sup3i.1 | ⊢ ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) | |
2 | suprcl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) | |
3 | 1 2 | ax-mp | ⊢ sup ( 𝐴 , ℝ , < ) ∈ ℝ |