Metamath Proof Explorer


Theorem suprclii

Description: Closure of supremum of a nonempty bounded set of reals. (Contributed by NM, 12-Sep-1999)

Ref Expression
Hypothesis sup3i.1 ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 )
Assertion suprclii sup ( 𝐴 , ℝ , < ) ∈ ℝ

Proof

Step Hyp Ref Expression
1 sup3i.1 ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 )
2 suprcl ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ )
3 1 2 ax-mp sup ( 𝐴 , ℝ , < ) ∈ ℝ