Metamath Proof Explorer


Theorem suprclii

Description: Closure of supremum of a nonempty bounded set of reals. (Contributed by NM, 12-Sep-1999)

Ref Expression
Hypothesis sup3i.1 AAxyAyx
Assertion suprclii supA<

Proof

Step Hyp Ref Expression
1 sup3i.1 AAxyAyx
2 suprcl AAxyAyxsupA<
3 1 2 ax-mp supA<