| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ist0.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
1
|
ist0 |
⊢ ( 𝐽 ∈ Kol2 ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝐽 ( 𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) → 𝑦 = 𝑧 ) ) ) |
| 3 |
2
|
simprbi |
⊢ ( 𝐽 ∈ Kol2 → ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝐽 ( 𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) → 𝑦 = 𝑧 ) ) |
| 4 |
|
eleq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥 ) ) |
| 5 |
4
|
bibi1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ↔ ( 𝐴 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) ) |
| 6 |
5
|
ralbidv |
⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ∈ 𝐽 ( 𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) ) |
| 7 |
|
eqeq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 = 𝑧 ↔ 𝐴 = 𝑧 ) ) |
| 8 |
6 7
|
imbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( ∀ 𝑥 ∈ 𝐽 ( 𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) → 𝑦 = 𝑧 ) ↔ ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) → 𝐴 = 𝑧 ) ) ) |
| 9 |
|
eleq1 |
⊢ ( 𝑧 = 𝐵 → ( 𝑧 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥 ) ) |
| 10 |
9
|
bibi2d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝐴 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ↔ ( 𝐴 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥 ) ) ) |
| 11 |
10
|
ralbidv |
⊢ ( 𝑧 = 𝐵 → ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥 ) ) ) |
| 12 |
|
eqeq2 |
⊢ ( 𝑧 = 𝐵 → ( 𝐴 = 𝑧 ↔ 𝐴 = 𝐵 ) ) |
| 13 |
11 12
|
imbi12d |
⊢ ( 𝑧 = 𝐵 → ( ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) → 𝐴 = 𝑧 ) ↔ ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥 ) → 𝐴 = 𝐵 ) ) ) |
| 14 |
8 13
|
rspc2va |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝐽 ( 𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) → 𝑦 = 𝑧 ) ) → ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥 ) → 𝐴 = 𝐵 ) ) |
| 15 |
14
|
ancoms |
⊢ ( ( ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ∀ 𝑥 ∈ 𝐽 ( 𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) → 𝑦 = 𝑧 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥 ) → 𝐴 = 𝐵 ) ) |
| 16 |
3 15
|
sylan |
⊢ ( ( 𝐽 ∈ Kol2 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ↔ 𝐵 ∈ 𝑥 ) → 𝐴 = 𝐵 ) ) |