| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
⊢ ( 𝑦 = 𝐴 → ( TC ‘ 𝑦 ) = ( TC ‘ 𝐴 ) ) |
| 2 |
|
sseq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑥 ) ) |
| 3 |
2
|
anbi1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ⊆ 𝑥 ∧ Tr 𝑥 ) ↔ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) ) ) |
| 4 |
3
|
abbidv |
⊢ ( 𝑦 = 𝐴 → { 𝑥 ∣ ( 𝑦 ⊆ 𝑥 ∧ Tr 𝑥 ) } = { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 5 |
4
|
inteqd |
⊢ ( 𝑦 = 𝐴 → ∩ { 𝑥 ∣ ( 𝑦 ⊆ 𝑥 ∧ Tr 𝑥 ) } = ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 6 |
1 5
|
eqeq12d |
⊢ ( 𝑦 = 𝐴 → ( ( TC ‘ 𝑦 ) = ∩ { 𝑥 ∣ ( 𝑦 ⊆ 𝑥 ∧ Tr 𝑥 ) } ↔ ( TC ‘ 𝐴 ) = ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) ) |
| 7 |
|
vex |
⊢ 𝑦 ∈ V |
| 8 |
7
|
tz9.1c |
⊢ ∩ { 𝑥 ∣ ( 𝑦 ⊆ 𝑥 ∧ Tr 𝑥 ) } ∈ V |
| 9 |
|
df-tc |
⊢ TC = ( 𝑦 ∈ V ↦ ∩ { 𝑥 ∣ ( 𝑦 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 10 |
9
|
fvmpt2 |
⊢ ( ( 𝑦 ∈ V ∧ ∩ { 𝑥 ∣ ( 𝑦 ⊆ 𝑥 ∧ Tr 𝑥 ) } ∈ V ) → ( TC ‘ 𝑦 ) = ∩ { 𝑥 ∣ ( 𝑦 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |
| 11 |
7 8 10
|
mp2an |
⊢ ( TC ‘ 𝑦 ) = ∩ { 𝑥 ∣ ( 𝑦 ⊆ 𝑥 ∧ Tr 𝑥 ) } |
| 12 |
6 11
|
vtoclg |
⊢ ( 𝐴 ∈ 𝑉 → ( TC ‘ 𝐴 ) = ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) |