Step |
Hyp |
Ref |
Expression |
1 |
|
tz9.1.1 |
⊢ 𝐴 ∈ V |
2 |
|
eqid |
⊢ ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) = ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) |
3 |
|
eqid |
⊢ ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) = ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) |
4 |
1 2 3
|
trcl |
⊢ ( 𝐴 ⊆ ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∧ Tr ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∧ ∀ 𝑥 ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) → ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ⊆ 𝑥 ) ) |
5 |
|
3simpa |
⊢ ( ( 𝐴 ⊆ ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∧ Tr ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∧ ∀ 𝑥 ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) → ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ⊆ 𝑥 ) ) → ( 𝐴 ⊆ ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∧ Tr ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ) ) |
6 |
|
omex |
⊢ ω ∈ V |
7 |
|
fvex |
⊢ ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∈ V |
8 |
6 7
|
iunex |
⊢ ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∈ V |
9 |
|
sseq2 |
⊢ ( 𝑥 = ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) → ( 𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ) ) |
10 |
|
treq |
⊢ ( 𝑥 = ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) → ( Tr 𝑥 ↔ Tr ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ) ) |
11 |
9 10
|
anbi12d |
⊢ ( 𝑥 = ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) → ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) ↔ ( 𝐴 ⊆ ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∧ Tr ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ) ) ) |
12 |
8 11
|
spcev |
⊢ ( ( 𝐴 ⊆ ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ∧ Tr ∪ 𝑤 ∈ ω ( ( rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ∪ 𝑧 ) ) , 𝐴 ) ↾ ω ) ‘ 𝑤 ) ) → ∃ 𝑥 ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) ) |
13 |
4 5 12
|
mp2b |
⊢ ∃ 𝑥 ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) |
14 |
|
abn0 |
⊢ ( { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ≠ ∅ ↔ ∃ 𝑥 ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) ) |
15 |
13 14
|
mpbir |
⊢ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ≠ ∅ |
16 |
|
intex |
⊢ ( { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ≠ ∅ ↔ ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ∈ V ) |
17 |
15 16
|
mpbi |
⊢ ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ∈ V |