| Step | Hyp | Ref | Expression | 
						
							| 1 |  | n0 | ⊢ ( 𝐴  ≠  ∅  ↔  ∃ 𝑧 𝑧  ∈  𝐴 ) | 
						
							| 2 |  | snssi | ⊢ ( 𝑧  ∈  𝐴  →  { 𝑧 }  ⊆  𝐴 ) | 
						
							| 3 | 2 | anim2i | ⊢ ( ( { 𝑧 }  ⊆  𝑦  ∧  𝑧  ∈  𝐴 )  →  ( { 𝑧 }  ⊆  𝑦  ∧  { 𝑧 }  ⊆  𝐴 ) ) | 
						
							| 4 |  | ssin | ⊢ ( ( { 𝑧 }  ⊆  𝑦  ∧  { 𝑧 }  ⊆  𝐴 )  ↔  { 𝑧 }  ⊆  ( 𝑦  ∩  𝐴 ) ) | 
						
							| 5 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 6 | 5 | snss | ⊢ ( 𝑧  ∈  ( 𝑦  ∩  𝐴 )  ↔  { 𝑧 }  ⊆  ( 𝑦  ∩  𝐴 ) ) | 
						
							| 7 | 4 6 | bitr4i | ⊢ ( ( { 𝑧 }  ⊆  𝑦  ∧  { 𝑧 }  ⊆  𝐴 )  ↔  𝑧  ∈  ( 𝑦  ∩  𝐴 ) ) | 
						
							| 8 | 3 7 | sylib | ⊢ ( ( { 𝑧 }  ⊆  𝑦  ∧  𝑧  ∈  𝐴 )  →  𝑧  ∈  ( 𝑦  ∩  𝐴 ) ) | 
						
							| 9 | 8 | ne0d | ⊢ ( ( { 𝑧 }  ⊆  𝑦  ∧  𝑧  ∈  𝐴 )  →  ( 𝑦  ∩  𝐴 )  ≠  ∅ ) | 
						
							| 10 |  | inss2 | ⊢ ( 𝑦  ∩  𝐴 )  ⊆  𝐴 | 
						
							| 11 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 12 | 11 | inex1 | ⊢ ( 𝑦  ∩  𝐴 )  ∈  V | 
						
							| 13 | 12 | epfrc | ⊢ ( (  E   Fr  𝐴  ∧  ( 𝑦  ∩  𝐴 )  ⊆  𝐴  ∧  ( 𝑦  ∩  𝐴 )  ≠  ∅ )  →  ∃ 𝑥  ∈  ( 𝑦  ∩  𝐴 ) ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 )  =  ∅ ) | 
						
							| 14 | 10 13 | mp3an2 | ⊢ ( (  E   Fr  𝐴  ∧  ( 𝑦  ∩  𝐴 )  ≠  ∅ )  →  ∃ 𝑥  ∈  ( 𝑦  ∩  𝐴 ) ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 )  =  ∅ ) | 
						
							| 15 |  | elin | ⊢ ( 𝑥  ∈  ( 𝑦  ∩  𝐴 )  ↔  ( 𝑥  ∈  𝑦  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 16 | 15 | anbi1i | ⊢ ( ( 𝑥  ∈  ( 𝑦  ∩  𝐴 )  ∧  ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 )  =  ∅ )  ↔  ( ( 𝑥  ∈  𝑦  ∧  𝑥  ∈  𝐴 )  ∧  ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 )  =  ∅ ) ) | 
						
							| 17 |  | anass | ⊢ ( ( ( 𝑥  ∈  𝑦  ∧  𝑥  ∈  𝐴 )  ∧  ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 )  =  ∅ )  ↔  ( 𝑥  ∈  𝑦  ∧  ( 𝑥  ∈  𝐴  ∧  ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 )  =  ∅ ) ) ) | 
						
							| 18 | 16 17 | bitri | ⊢ ( ( 𝑥  ∈  ( 𝑦  ∩  𝐴 )  ∧  ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 )  =  ∅ )  ↔  ( 𝑥  ∈  𝑦  ∧  ( 𝑥  ∈  𝐴  ∧  ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 )  =  ∅ ) ) ) | 
						
							| 19 |  | n0 | ⊢ ( ( 𝑥  ∩  𝐴 )  ≠  ∅  ↔  ∃ 𝑤 𝑤  ∈  ( 𝑥  ∩  𝐴 ) ) | 
						
							| 20 |  | elinel1 | ⊢ ( 𝑤  ∈  ( 𝑥  ∩  𝐴 )  →  𝑤  ∈  𝑥 ) | 
						
							| 21 | 20 | ancri | ⊢ ( 𝑤  ∈  ( 𝑥  ∩  𝐴 )  →  ( 𝑤  ∈  𝑥  ∧  𝑤  ∈  ( 𝑥  ∩  𝐴 ) ) ) | 
						
							| 22 |  | trel | ⊢ ( Tr  𝑦  →  ( ( 𝑤  ∈  𝑥  ∧  𝑥  ∈  𝑦 )  →  𝑤  ∈  𝑦 ) ) | 
						
							| 23 |  | inass | ⊢ ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 )  =  ( 𝑦  ∩  ( 𝐴  ∩  𝑥 ) ) | 
						
							| 24 |  | incom | ⊢ ( 𝐴  ∩  𝑥 )  =  ( 𝑥  ∩  𝐴 ) | 
						
							| 25 | 24 | ineq2i | ⊢ ( 𝑦  ∩  ( 𝐴  ∩  𝑥 ) )  =  ( 𝑦  ∩  ( 𝑥  ∩  𝐴 ) ) | 
						
							| 26 | 23 25 | eqtri | ⊢ ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 )  =  ( 𝑦  ∩  ( 𝑥  ∩  𝐴 ) ) | 
						
							| 27 | 26 | eleq2i | ⊢ ( 𝑤  ∈  ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 )  ↔  𝑤  ∈  ( 𝑦  ∩  ( 𝑥  ∩  𝐴 ) ) ) | 
						
							| 28 |  | elin | ⊢ ( 𝑤  ∈  ( 𝑦  ∩  ( 𝑥  ∩  𝐴 ) )  ↔  ( 𝑤  ∈  𝑦  ∧  𝑤  ∈  ( 𝑥  ∩  𝐴 ) ) ) | 
						
							| 29 | 27 28 | bitr2i | ⊢ ( ( 𝑤  ∈  𝑦  ∧  𝑤  ∈  ( 𝑥  ∩  𝐴 ) )  ↔  𝑤  ∈  ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 ) ) | 
						
							| 30 |  | ne0i | ⊢ ( 𝑤  ∈  ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 )  →  ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 )  ≠  ∅ ) | 
						
							| 31 | 29 30 | sylbi | ⊢ ( ( 𝑤  ∈  𝑦  ∧  𝑤  ∈  ( 𝑥  ∩  𝐴 ) )  →  ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 )  ≠  ∅ ) | 
						
							| 32 | 31 | ex | ⊢ ( 𝑤  ∈  𝑦  →  ( 𝑤  ∈  ( 𝑥  ∩  𝐴 )  →  ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 )  ≠  ∅ ) ) | 
						
							| 33 | 22 32 | syl6 | ⊢ ( Tr  𝑦  →  ( ( 𝑤  ∈  𝑥  ∧  𝑥  ∈  𝑦 )  →  ( 𝑤  ∈  ( 𝑥  ∩  𝐴 )  →  ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 )  ≠  ∅ ) ) ) | 
						
							| 34 | 33 | expd | ⊢ ( Tr  𝑦  →  ( 𝑤  ∈  𝑥  →  ( 𝑥  ∈  𝑦  →  ( 𝑤  ∈  ( 𝑥  ∩  𝐴 )  →  ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 )  ≠  ∅ ) ) ) ) | 
						
							| 35 | 34 | com34 | ⊢ ( Tr  𝑦  →  ( 𝑤  ∈  𝑥  →  ( 𝑤  ∈  ( 𝑥  ∩  𝐴 )  →  ( 𝑥  ∈  𝑦  →  ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 )  ≠  ∅ ) ) ) ) | 
						
							| 36 | 35 | impd | ⊢ ( Tr  𝑦  →  ( ( 𝑤  ∈  𝑥  ∧  𝑤  ∈  ( 𝑥  ∩  𝐴 ) )  →  ( 𝑥  ∈  𝑦  →  ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 )  ≠  ∅ ) ) ) | 
						
							| 37 | 21 36 | syl5 | ⊢ ( Tr  𝑦  →  ( 𝑤  ∈  ( 𝑥  ∩  𝐴 )  →  ( 𝑥  ∈  𝑦  →  ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 )  ≠  ∅ ) ) ) | 
						
							| 38 | 37 | exlimdv | ⊢ ( Tr  𝑦  →  ( ∃ 𝑤 𝑤  ∈  ( 𝑥  ∩  𝐴 )  →  ( 𝑥  ∈  𝑦  →  ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 )  ≠  ∅ ) ) ) | 
						
							| 39 | 19 38 | biimtrid | ⊢ ( Tr  𝑦  →  ( ( 𝑥  ∩  𝐴 )  ≠  ∅  →  ( 𝑥  ∈  𝑦  →  ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 )  ≠  ∅ ) ) ) | 
						
							| 40 | 39 | com23 | ⊢ ( Tr  𝑦  →  ( 𝑥  ∈  𝑦  →  ( ( 𝑥  ∩  𝐴 )  ≠  ∅  →  ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 )  ≠  ∅ ) ) ) | 
						
							| 41 | 40 | imp | ⊢ ( ( Tr  𝑦  ∧  𝑥  ∈  𝑦 )  →  ( ( 𝑥  ∩  𝐴 )  ≠  ∅  →  ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 )  ≠  ∅ ) ) | 
						
							| 42 | 41 | necon4d | ⊢ ( ( Tr  𝑦  ∧  𝑥  ∈  𝑦 )  →  ( ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 )  =  ∅  →  ( 𝑥  ∩  𝐴 )  =  ∅ ) ) | 
						
							| 43 | 42 | anim2d | ⊢ ( ( Tr  𝑦  ∧  𝑥  ∈  𝑦 )  →  ( ( 𝑥  ∈  𝐴  ∧  ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 )  =  ∅ )  →  ( 𝑥  ∈  𝐴  ∧  ( 𝑥  ∩  𝐴 )  =  ∅ ) ) ) | 
						
							| 44 | 43 | expimpd | ⊢ ( Tr  𝑦  →  ( ( 𝑥  ∈  𝑦  ∧  ( 𝑥  ∈  𝐴  ∧  ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 )  =  ∅ ) )  →  ( 𝑥  ∈  𝐴  ∧  ( 𝑥  ∩  𝐴 )  =  ∅ ) ) ) | 
						
							| 45 | 18 44 | biimtrid | ⊢ ( Tr  𝑦  →  ( ( 𝑥  ∈  ( 𝑦  ∩  𝐴 )  ∧  ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 )  =  ∅ )  →  ( 𝑥  ∈  𝐴  ∧  ( 𝑥  ∩  𝐴 )  =  ∅ ) ) ) | 
						
							| 46 | 45 | reximdv2 | ⊢ ( Tr  𝑦  →  ( ∃ 𝑥  ∈  ( 𝑦  ∩  𝐴 ) ( ( 𝑦  ∩  𝐴 )  ∩  𝑥 )  =  ∅  →  ∃ 𝑥  ∈  𝐴 ( 𝑥  ∩  𝐴 )  =  ∅ ) ) | 
						
							| 47 | 14 46 | syl5 | ⊢ ( Tr  𝑦  →  ( (  E   Fr  𝐴  ∧  ( 𝑦  ∩  𝐴 )  ≠  ∅ )  →  ∃ 𝑥  ∈  𝐴 ( 𝑥  ∩  𝐴 )  =  ∅ ) ) | 
						
							| 48 | 47 | expcomd | ⊢ ( Tr  𝑦  →  ( ( 𝑦  ∩  𝐴 )  ≠  ∅  →  (  E   Fr  𝐴  →  ∃ 𝑥  ∈  𝐴 ( 𝑥  ∩  𝐴 )  =  ∅ ) ) ) | 
						
							| 49 | 9 48 | syl5 | ⊢ ( Tr  𝑦  →  ( ( { 𝑧 }  ⊆  𝑦  ∧  𝑧  ∈  𝐴 )  →  (  E   Fr  𝐴  →  ∃ 𝑥  ∈  𝐴 ( 𝑥  ∩  𝐴 )  =  ∅ ) ) ) | 
						
							| 50 | 49 | expd | ⊢ ( Tr  𝑦  →  ( { 𝑧 }  ⊆  𝑦  →  ( 𝑧  ∈  𝐴  →  (  E   Fr  𝐴  →  ∃ 𝑥  ∈  𝐴 ( 𝑥  ∩  𝐴 )  =  ∅ ) ) ) ) | 
						
							| 51 | 50 | impcom | ⊢ ( ( { 𝑧 }  ⊆  𝑦  ∧  Tr  𝑦 )  →  ( 𝑧  ∈  𝐴  →  (  E   Fr  𝐴  →  ∃ 𝑥  ∈  𝐴 ( 𝑥  ∩  𝐴 )  =  ∅ ) ) ) | 
						
							| 52 | 51 | 3adant3 | ⊢ ( ( { 𝑧 }  ⊆  𝑦  ∧  Tr  𝑦  ∧  ∀ 𝑤 ( ( { 𝑧 }  ⊆  𝑤  ∧  Tr  𝑤 )  →  𝑦  ⊆  𝑤 ) )  →  ( 𝑧  ∈  𝐴  →  (  E   Fr  𝐴  →  ∃ 𝑥  ∈  𝐴 ( 𝑥  ∩  𝐴 )  =  ∅ ) ) ) | 
						
							| 53 |  | vsnex | ⊢ { 𝑧 }  ∈  V | 
						
							| 54 | 53 | tz9.1 | ⊢ ∃ 𝑦 ( { 𝑧 }  ⊆  𝑦  ∧  Tr  𝑦  ∧  ∀ 𝑤 ( ( { 𝑧 }  ⊆  𝑤  ∧  Tr  𝑤 )  →  𝑦  ⊆  𝑤 ) ) | 
						
							| 55 | 52 54 | exlimiiv | ⊢ ( 𝑧  ∈  𝐴  →  (  E   Fr  𝐴  →  ∃ 𝑥  ∈  𝐴 ( 𝑥  ∩  𝐴 )  =  ∅ ) ) | 
						
							| 56 | 55 | exlimiv | ⊢ ( ∃ 𝑧 𝑧  ∈  𝐴  →  (  E   Fr  𝐴  →  ∃ 𝑥  ∈  𝐴 ( 𝑥  ∩  𝐴 )  =  ∅ ) ) | 
						
							| 57 | 1 56 | sylbi | ⊢ ( 𝐴  ≠  ∅  →  (  E   Fr  𝐴  →  ∃ 𝑥  ∈  𝐴 ( 𝑥  ∩  𝐴 )  =  ∅ ) ) | 
						
							| 58 | 57 | impcom | ⊢ ( (  E   Fr  𝐴  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑥  ∈  𝐴 ( 𝑥  ∩  𝐴 )  =  ∅ ) |