| Step | Hyp | Ref | Expression | 
						
							| 1 |  | n0 |  |-  ( A =/= (/) <-> E. z z e. A ) | 
						
							| 2 |  | snssi |  |-  ( z e. A -> { z } C_ A ) | 
						
							| 3 | 2 | anim2i |  |-  ( ( { z } C_ y /\ z e. A ) -> ( { z } C_ y /\ { z } C_ A ) ) | 
						
							| 4 |  | ssin |  |-  ( ( { z } C_ y /\ { z } C_ A ) <-> { z } C_ ( y i^i A ) ) | 
						
							| 5 |  | vex |  |-  z e. _V | 
						
							| 6 | 5 | snss |  |-  ( z e. ( y i^i A ) <-> { z } C_ ( y i^i A ) ) | 
						
							| 7 | 4 6 | bitr4i |  |-  ( ( { z } C_ y /\ { z } C_ A ) <-> z e. ( y i^i A ) ) | 
						
							| 8 | 3 7 | sylib |  |-  ( ( { z } C_ y /\ z e. A ) -> z e. ( y i^i A ) ) | 
						
							| 9 | 8 | ne0d |  |-  ( ( { z } C_ y /\ z e. A ) -> ( y i^i A ) =/= (/) ) | 
						
							| 10 |  | inss2 |  |-  ( y i^i A ) C_ A | 
						
							| 11 |  | vex |  |-  y e. _V | 
						
							| 12 | 11 | inex1 |  |-  ( y i^i A ) e. _V | 
						
							| 13 | 12 | epfrc |  |-  ( ( _E Fr A /\ ( y i^i A ) C_ A /\ ( y i^i A ) =/= (/) ) -> E. x e. ( y i^i A ) ( ( y i^i A ) i^i x ) = (/) ) | 
						
							| 14 | 10 13 | mp3an2 |  |-  ( ( _E Fr A /\ ( y i^i A ) =/= (/) ) -> E. x e. ( y i^i A ) ( ( y i^i A ) i^i x ) = (/) ) | 
						
							| 15 |  | elin |  |-  ( x e. ( y i^i A ) <-> ( x e. y /\ x e. A ) ) | 
						
							| 16 | 15 | anbi1i |  |-  ( ( x e. ( y i^i A ) /\ ( ( y i^i A ) i^i x ) = (/) ) <-> ( ( x e. y /\ x e. A ) /\ ( ( y i^i A ) i^i x ) = (/) ) ) | 
						
							| 17 |  | anass |  |-  ( ( ( x e. y /\ x e. A ) /\ ( ( y i^i A ) i^i x ) = (/) ) <-> ( x e. y /\ ( x e. A /\ ( ( y i^i A ) i^i x ) = (/) ) ) ) | 
						
							| 18 | 16 17 | bitri |  |-  ( ( x e. ( y i^i A ) /\ ( ( y i^i A ) i^i x ) = (/) ) <-> ( x e. y /\ ( x e. A /\ ( ( y i^i A ) i^i x ) = (/) ) ) ) | 
						
							| 19 |  | n0 |  |-  ( ( x i^i A ) =/= (/) <-> E. w w e. ( x i^i A ) ) | 
						
							| 20 |  | elinel1 |  |-  ( w e. ( x i^i A ) -> w e. x ) | 
						
							| 21 | 20 | ancri |  |-  ( w e. ( x i^i A ) -> ( w e. x /\ w e. ( x i^i A ) ) ) | 
						
							| 22 |  | trel |  |-  ( Tr y -> ( ( w e. x /\ x e. y ) -> w e. y ) ) | 
						
							| 23 |  | inass |  |-  ( ( y i^i A ) i^i x ) = ( y i^i ( A i^i x ) ) | 
						
							| 24 |  | incom |  |-  ( A i^i x ) = ( x i^i A ) | 
						
							| 25 | 24 | ineq2i |  |-  ( y i^i ( A i^i x ) ) = ( y i^i ( x i^i A ) ) | 
						
							| 26 | 23 25 | eqtri |  |-  ( ( y i^i A ) i^i x ) = ( y i^i ( x i^i A ) ) | 
						
							| 27 | 26 | eleq2i |  |-  ( w e. ( ( y i^i A ) i^i x ) <-> w e. ( y i^i ( x i^i A ) ) ) | 
						
							| 28 |  | elin |  |-  ( w e. ( y i^i ( x i^i A ) ) <-> ( w e. y /\ w e. ( x i^i A ) ) ) | 
						
							| 29 | 27 28 | bitr2i |  |-  ( ( w e. y /\ w e. ( x i^i A ) ) <-> w e. ( ( y i^i A ) i^i x ) ) | 
						
							| 30 |  | ne0i |  |-  ( w e. ( ( y i^i A ) i^i x ) -> ( ( y i^i A ) i^i x ) =/= (/) ) | 
						
							| 31 | 29 30 | sylbi |  |-  ( ( w e. y /\ w e. ( x i^i A ) ) -> ( ( y i^i A ) i^i x ) =/= (/) ) | 
						
							| 32 | 31 | ex |  |-  ( w e. y -> ( w e. ( x i^i A ) -> ( ( y i^i A ) i^i x ) =/= (/) ) ) | 
						
							| 33 | 22 32 | syl6 |  |-  ( Tr y -> ( ( w e. x /\ x e. y ) -> ( w e. ( x i^i A ) -> ( ( y i^i A ) i^i x ) =/= (/) ) ) ) | 
						
							| 34 | 33 | expd |  |-  ( Tr y -> ( w e. x -> ( x e. y -> ( w e. ( x i^i A ) -> ( ( y i^i A ) i^i x ) =/= (/) ) ) ) ) | 
						
							| 35 | 34 | com34 |  |-  ( Tr y -> ( w e. x -> ( w e. ( x i^i A ) -> ( x e. y -> ( ( y i^i A ) i^i x ) =/= (/) ) ) ) ) | 
						
							| 36 | 35 | impd |  |-  ( Tr y -> ( ( w e. x /\ w e. ( x i^i A ) ) -> ( x e. y -> ( ( y i^i A ) i^i x ) =/= (/) ) ) ) | 
						
							| 37 | 21 36 | syl5 |  |-  ( Tr y -> ( w e. ( x i^i A ) -> ( x e. y -> ( ( y i^i A ) i^i x ) =/= (/) ) ) ) | 
						
							| 38 | 37 | exlimdv |  |-  ( Tr y -> ( E. w w e. ( x i^i A ) -> ( x e. y -> ( ( y i^i A ) i^i x ) =/= (/) ) ) ) | 
						
							| 39 | 19 38 | biimtrid |  |-  ( Tr y -> ( ( x i^i A ) =/= (/) -> ( x e. y -> ( ( y i^i A ) i^i x ) =/= (/) ) ) ) | 
						
							| 40 | 39 | com23 |  |-  ( Tr y -> ( x e. y -> ( ( x i^i A ) =/= (/) -> ( ( y i^i A ) i^i x ) =/= (/) ) ) ) | 
						
							| 41 | 40 | imp |  |-  ( ( Tr y /\ x e. y ) -> ( ( x i^i A ) =/= (/) -> ( ( y i^i A ) i^i x ) =/= (/) ) ) | 
						
							| 42 | 41 | necon4d |  |-  ( ( Tr y /\ x e. y ) -> ( ( ( y i^i A ) i^i x ) = (/) -> ( x i^i A ) = (/) ) ) | 
						
							| 43 | 42 | anim2d |  |-  ( ( Tr y /\ x e. y ) -> ( ( x e. A /\ ( ( y i^i A ) i^i x ) = (/) ) -> ( x e. A /\ ( x i^i A ) = (/) ) ) ) | 
						
							| 44 | 43 | expimpd |  |-  ( Tr y -> ( ( x e. y /\ ( x e. A /\ ( ( y i^i A ) i^i x ) = (/) ) ) -> ( x e. A /\ ( x i^i A ) = (/) ) ) ) | 
						
							| 45 | 18 44 | biimtrid |  |-  ( Tr y -> ( ( x e. ( y i^i A ) /\ ( ( y i^i A ) i^i x ) = (/) ) -> ( x e. A /\ ( x i^i A ) = (/) ) ) ) | 
						
							| 46 | 45 | reximdv2 |  |-  ( Tr y -> ( E. x e. ( y i^i A ) ( ( y i^i A ) i^i x ) = (/) -> E. x e. A ( x i^i A ) = (/) ) ) | 
						
							| 47 | 14 46 | syl5 |  |-  ( Tr y -> ( ( _E Fr A /\ ( y i^i A ) =/= (/) ) -> E. x e. A ( x i^i A ) = (/) ) ) | 
						
							| 48 | 47 | expcomd |  |-  ( Tr y -> ( ( y i^i A ) =/= (/) -> ( _E Fr A -> E. x e. A ( x i^i A ) = (/) ) ) ) | 
						
							| 49 | 9 48 | syl5 |  |-  ( Tr y -> ( ( { z } C_ y /\ z e. A ) -> ( _E Fr A -> E. x e. A ( x i^i A ) = (/) ) ) ) | 
						
							| 50 | 49 | expd |  |-  ( Tr y -> ( { z } C_ y -> ( z e. A -> ( _E Fr A -> E. x e. A ( x i^i A ) = (/) ) ) ) ) | 
						
							| 51 | 50 | impcom |  |-  ( ( { z } C_ y /\ Tr y ) -> ( z e. A -> ( _E Fr A -> E. x e. A ( x i^i A ) = (/) ) ) ) | 
						
							| 52 | 51 | 3adant3 |  |-  ( ( { z } C_ y /\ Tr y /\ A. w ( ( { z } C_ w /\ Tr w ) -> y C_ w ) ) -> ( z e. A -> ( _E Fr A -> E. x e. A ( x i^i A ) = (/) ) ) ) | 
						
							| 53 |  | vsnex |  |-  { z } e. _V | 
						
							| 54 | 53 | tz9.1 |  |-  E. y ( { z } C_ y /\ Tr y /\ A. w ( ( { z } C_ w /\ Tr w ) -> y C_ w ) ) | 
						
							| 55 | 52 54 | exlimiiv |  |-  ( z e. A -> ( _E Fr A -> E. x e. A ( x i^i A ) = (/) ) ) | 
						
							| 56 | 55 | exlimiv |  |-  ( E. z z e. A -> ( _E Fr A -> E. x e. A ( x i^i A ) = (/) ) ) | 
						
							| 57 | 1 56 | sylbi |  |-  ( A =/= (/) -> ( _E Fr A -> E. x e. A ( x i^i A ) = (/) ) ) | 
						
							| 58 | 57 | impcom |  |-  ( ( _E Fr A /\ A =/= (/) ) -> E. x e. A ( x i^i A ) = (/) ) |