| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tfrlem.1 | ⊢ 𝐴  =  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝐹 ‘ ( 𝑓  ↾  𝑦 ) ) ) } | 
						
							| 2 | 1 | tfrlem3 | ⊢ 𝐴  =  { 𝑔  ∣  ∃ 𝑧  ∈  On ( 𝑔  Fn  𝑧  ∧  ∀ 𝑤  ∈  𝑧 ( 𝑔 ‘ 𝑤 )  =  ( 𝐹 ‘ ( 𝑔  ↾  𝑤 ) ) ) } | 
						
							| 3 | 2 | eqabri | ⊢ ( 𝑔  ∈  𝐴  ↔  ∃ 𝑧  ∈  On ( 𝑔  Fn  𝑧  ∧  ∀ 𝑤  ∈  𝑧 ( 𝑔 ‘ 𝑤 )  =  ( 𝐹 ‘ ( 𝑔  ↾  𝑤 ) ) ) ) | 
						
							| 4 |  | fndm | ⊢ ( 𝑔  Fn  𝑧  →  dom  𝑔  =  𝑧 ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝑔  Fn  𝑧  ∧  ∀ 𝑤  ∈  𝑧 ( 𝑔 ‘ 𝑤 )  =  ( 𝐹 ‘ ( 𝑔  ↾  𝑤 ) ) )  →  dom  𝑔  =  𝑧 ) | 
						
							| 6 | 5 | eleq1d | ⊢ ( ( 𝑔  Fn  𝑧  ∧  ∀ 𝑤  ∈  𝑧 ( 𝑔 ‘ 𝑤 )  =  ( 𝐹 ‘ ( 𝑔  ↾  𝑤 ) ) )  →  ( dom  𝑔  ∈  On  ↔  𝑧  ∈  On ) ) | 
						
							| 7 | 6 | biimprcd | ⊢ ( 𝑧  ∈  On  →  ( ( 𝑔  Fn  𝑧  ∧  ∀ 𝑤  ∈  𝑧 ( 𝑔 ‘ 𝑤 )  =  ( 𝐹 ‘ ( 𝑔  ↾  𝑤 ) ) )  →  dom  𝑔  ∈  On ) ) | 
						
							| 8 | 7 | rexlimiv | ⊢ ( ∃ 𝑧  ∈  On ( 𝑔  Fn  𝑧  ∧  ∀ 𝑤  ∈  𝑧 ( 𝑔 ‘ 𝑤 )  =  ( 𝐹 ‘ ( 𝑔  ↾  𝑤 ) ) )  →  dom  𝑔  ∈  On ) | 
						
							| 9 | 3 8 | sylbi | ⊢ ( 𝑔  ∈  𝐴  →  dom  𝑔  ∈  On ) | 
						
							| 10 |  | eleq1a | ⊢ ( dom  𝑔  ∈  On  →  ( 𝑧  =  dom  𝑔  →  𝑧  ∈  On ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝑔  ∈  𝐴  →  ( 𝑧  =  dom  𝑔  →  𝑧  ∈  On ) ) | 
						
							| 12 | 11 | rexlimiv | ⊢ ( ∃ 𝑔  ∈  𝐴 𝑧  =  dom  𝑔  →  𝑧  ∈  On ) | 
						
							| 13 | 12 | abssi | ⊢ { 𝑧  ∣  ∃ 𝑔  ∈  𝐴 𝑧  =  dom  𝑔 }  ⊆  On | 
						
							| 14 |  | ssorduni | ⊢ ( { 𝑧  ∣  ∃ 𝑔  ∈  𝐴 𝑧  =  dom  𝑔 }  ⊆  On  →  Ord  ∪  { 𝑧  ∣  ∃ 𝑔  ∈  𝐴 𝑧  =  dom  𝑔 } ) | 
						
							| 15 | 13 14 | ax-mp | ⊢ Ord  ∪  { 𝑧  ∣  ∃ 𝑔  ∈  𝐴 𝑧  =  dom  𝑔 } | 
						
							| 16 | 1 | recsfval | ⊢ recs ( 𝐹 )  =  ∪  𝐴 | 
						
							| 17 | 16 | dmeqi | ⊢ dom  recs ( 𝐹 )  =  dom  ∪  𝐴 | 
						
							| 18 |  | dmuni | ⊢ dom  ∪  𝐴  =  ∪  𝑔  ∈  𝐴 dom  𝑔 | 
						
							| 19 |  | vex | ⊢ 𝑔  ∈  V | 
						
							| 20 | 19 | dmex | ⊢ dom  𝑔  ∈  V | 
						
							| 21 | 20 | dfiun2 | ⊢ ∪  𝑔  ∈  𝐴 dom  𝑔  =  ∪  { 𝑧  ∣  ∃ 𝑔  ∈  𝐴 𝑧  =  dom  𝑔 } | 
						
							| 22 | 17 18 21 | 3eqtri | ⊢ dom  recs ( 𝐹 )  =  ∪  { 𝑧  ∣  ∃ 𝑔  ∈  𝐴 𝑧  =  dom  𝑔 } | 
						
							| 23 |  | ordeq | ⊢ ( dom  recs ( 𝐹 )  =  ∪  { 𝑧  ∣  ∃ 𝑔  ∈  𝐴 𝑧  =  dom  𝑔 }  →  ( Ord  dom  recs ( 𝐹 )  ↔  Ord  ∪  { 𝑧  ∣  ∃ 𝑔  ∈  𝐴 𝑧  =  dom  𝑔 } ) ) | 
						
							| 24 | 22 23 | ax-mp | ⊢ ( Ord  dom  recs ( 𝐹 )  ↔  Ord  ∪  { 𝑧  ∣  ∃ 𝑔  ∈  𝐴 𝑧  =  dom  𝑔 } ) | 
						
							| 25 | 15 24 | mpbir | ⊢ Ord  dom  recs ( 𝐹 ) |