| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tfrlem.1 |  |-  A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } | 
						
							| 2 | 1 | tfrlem3 |  |-  A = { g | E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) } | 
						
							| 3 | 2 | eqabri |  |-  ( g e. A <-> E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) ) | 
						
							| 4 |  | fndm |  |-  ( g Fn z -> dom g = z ) | 
						
							| 5 | 4 | adantr |  |-  ( ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) -> dom g = z ) | 
						
							| 6 | 5 | eleq1d |  |-  ( ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) -> ( dom g e. On <-> z e. On ) ) | 
						
							| 7 | 6 | biimprcd |  |-  ( z e. On -> ( ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) -> dom g e. On ) ) | 
						
							| 8 | 7 | rexlimiv |  |-  ( E. z e. On ( g Fn z /\ A. w e. z ( g ` w ) = ( F ` ( g |` w ) ) ) -> dom g e. On ) | 
						
							| 9 | 3 8 | sylbi |  |-  ( g e. A -> dom g e. On ) | 
						
							| 10 |  | eleq1a |  |-  ( dom g e. On -> ( z = dom g -> z e. On ) ) | 
						
							| 11 | 9 10 | syl |  |-  ( g e. A -> ( z = dom g -> z e. On ) ) | 
						
							| 12 | 11 | rexlimiv |  |-  ( E. g e. A z = dom g -> z e. On ) | 
						
							| 13 | 12 | abssi |  |-  { z | E. g e. A z = dom g } C_ On | 
						
							| 14 |  | ssorduni |  |-  ( { z | E. g e. A z = dom g } C_ On -> Ord U. { z | E. g e. A z = dom g } ) | 
						
							| 15 | 13 14 | ax-mp |  |-  Ord U. { z | E. g e. A z = dom g } | 
						
							| 16 | 1 | recsfval |  |-  recs ( F ) = U. A | 
						
							| 17 | 16 | dmeqi |  |-  dom recs ( F ) = dom U. A | 
						
							| 18 |  | dmuni |  |-  dom U. A = U_ g e. A dom g | 
						
							| 19 |  | vex |  |-  g e. _V | 
						
							| 20 | 19 | dmex |  |-  dom g e. _V | 
						
							| 21 | 20 | dfiun2 |  |-  U_ g e. A dom g = U. { z | E. g e. A z = dom g } | 
						
							| 22 | 17 18 21 | 3eqtri |  |-  dom recs ( F ) = U. { z | E. g e. A z = dom g } | 
						
							| 23 |  | ordeq |  |-  ( dom recs ( F ) = U. { z | E. g e. A z = dom g } -> ( Ord dom recs ( F ) <-> Ord U. { z | E. g e. A z = dom g } ) ) | 
						
							| 24 | 22 23 | ax-mp |  |-  ( Ord dom recs ( F ) <-> Ord U. { z | E. g e. A z = dom g } ) | 
						
							| 25 | 15 24 | mpbir |  |-  Ord dom recs ( F ) |