| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tglineelsb2.p | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | tglineelsb2.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | tglineelsb2.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 4 |  | tglineelsb2.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | tglineelsb2.1 | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 6 |  | tglineelsb2.2 | ⊢ ( 𝜑  →  𝑄  ∈  𝐵 ) | 
						
							| 7 |  | tglineelsb2.4 | ⊢ ( 𝜑  →  𝑃  ≠  𝑄 ) | 
						
							| 8 | 1 2 3 4 5 6 7 | tghilberti1 | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ran  𝐿 ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 ) ) | 
						
							| 9 | 1 2 3 4 5 6 7 | tghilberti2 | ⊢ ( 𝜑  →  ∃* 𝑥  ∈  ran  𝐿 ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 ) ) | 
						
							| 10 |  | reu5 | ⊢ ( ∃! 𝑥  ∈  ran  𝐿 ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 )  ↔  ( ∃ 𝑥  ∈  ran  𝐿 ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 )  ∧  ∃* 𝑥  ∈  ran  𝐿 ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 ) ) ) | 
						
							| 11 | 8 9 10 | sylanbrc | ⊢ ( 𝜑  →  ∃! 𝑥  ∈  ran  𝐿 ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 ) ) |