Step |
Hyp |
Ref |
Expression |
1 |
|
tglineelsb2.p |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
tglineelsb2.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
tglineelsb2.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
4 |
|
tglineelsb2.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
tglineelsb2.1 |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
6 |
|
tglineelsb2.2 |
⊢ ( 𝜑 → 𝑄 ∈ 𝐵 ) |
7 |
|
tglineelsb2.4 |
⊢ ( 𝜑 → 𝑃 ≠ 𝑄 ) |
8 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿 ) ∧ ( ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ∧ ( 𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦 ) ) ) → 𝐺 ∈ TarskiG ) |
9 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿 ) ∧ ( ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ∧ ( 𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦 ) ) ) → 𝑃 ∈ 𝐵 ) |
10 |
6
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿 ) ∧ ( ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ∧ ( 𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦 ) ) ) → 𝑄 ∈ 𝐵 ) |
11 |
7
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿 ) ∧ ( ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ∧ ( 𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦 ) ) ) → 𝑃 ≠ 𝑄 ) |
12 |
|
simp2l |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿 ) ∧ ( ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ∧ ( 𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦 ) ) ) → 𝑥 ∈ ran 𝐿 ) |
13 |
|
simp3ll |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿 ) ∧ ( ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ∧ ( 𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦 ) ) ) → 𝑃 ∈ 𝑥 ) |
14 |
|
simp3lr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿 ) ∧ ( ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ∧ ( 𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦 ) ) ) → 𝑄 ∈ 𝑥 ) |
15 |
1 2 3 8 9 10 11 11 12 13 14
|
tglinethru |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿 ) ∧ ( ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ∧ ( 𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦 ) ) ) → 𝑥 = ( 𝑃 𝐿 𝑄 ) ) |
16 |
|
simp2r |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿 ) ∧ ( ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ∧ ( 𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦 ) ) ) → 𝑦 ∈ ran 𝐿 ) |
17 |
|
simp3rl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿 ) ∧ ( ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ∧ ( 𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦 ) ) ) → 𝑃 ∈ 𝑦 ) |
18 |
|
simp3rr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿 ) ∧ ( ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ∧ ( 𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦 ) ) ) → 𝑄 ∈ 𝑦 ) |
19 |
1 2 3 8 9 10 11 11 16 17 18
|
tglinethru |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿 ) ∧ ( ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ∧ ( 𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦 ) ) ) → 𝑦 = ( 𝑃 𝐿 𝑄 ) ) |
20 |
15 19
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿 ) ∧ ( ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ∧ ( 𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦 ) ) ) → 𝑥 = 𝑦 ) |
21 |
20
|
3expia |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran 𝐿 ∧ 𝑦 ∈ ran 𝐿 ) ) → ( ( ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ∧ ( 𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦 ) ) → 𝑥 = 𝑦 ) ) |
22 |
21
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ran 𝐿 ∀ 𝑦 ∈ ran 𝐿 ( ( ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ∧ ( 𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦 ) ) → 𝑥 = 𝑦 ) ) |
23 |
|
eleq2w |
⊢ ( 𝑥 = 𝑦 → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑦 ) ) |
24 |
|
eleq2w |
⊢ ( 𝑥 = 𝑦 → ( 𝑄 ∈ 𝑥 ↔ 𝑄 ∈ 𝑦 ) ) |
25 |
23 24
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ↔ ( 𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦 ) ) ) |
26 |
25
|
rmo4 |
⊢ ( ∃* 𝑥 ∈ ran 𝐿 ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ↔ ∀ 𝑥 ∈ ran 𝐿 ∀ 𝑦 ∈ ran 𝐿 ( ( ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ∧ ( 𝑃 ∈ 𝑦 ∧ 𝑄 ∈ 𝑦 ) ) → 𝑥 = 𝑦 ) ) |
27 |
22 26
|
sylibr |
⊢ ( 𝜑 → ∃* 𝑥 ∈ ran 𝐿 ( 𝑃 ∈ 𝑥 ∧ 𝑄 ∈ 𝑥 ) ) |