| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tglineelsb2.p | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | tglineelsb2.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | tglineelsb2.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 4 |  | tglineelsb2.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | tglineelsb2.1 | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 6 |  | tglineelsb2.2 | ⊢ ( 𝜑  →  𝑄  ∈  𝐵 ) | 
						
							| 7 |  | tglineelsb2.4 | ⊢ ( 𝜑  →  𝑃  ≠  𝑄 ) | 
						
							| 8 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ran  𝐿  ∧  𝑦  ∈  ran  𝐿 )  ∧  ( ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 )  ∧  ( 𝑃  ∈  𝑦  ∧  𝑄  ∈  𝑦 ) ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 9 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ran  𝐿  ∧  𝑦  ∈  ran  𝐿 )  ∧  ( ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 )  ∧  ( 𝑃  ∈  𝑦  ∧  𝑄  ∈  𝑦 ) ) )  →  𝑃  ∈  𝐵 ) | 
						
							| 10 | 6 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ran  𝐿  ∧  𝑦  ∈  ran  𝐿 )  ∧  ( ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 )  ∧  ( 𝑃  ∈  𝑦  ∧  𝑄  ∈  𝑦 ) ) )  →  𝑄  ∈  𝐵 ) | 
						
							| 11 | 7 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ran  𝐿  ∧  𝑦  ∈  ran  𝐿 )  ∧  ( ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 )  ∧  ( 𝑃  ∈  𝑦  ∧  𝑄  ∈  𝑦 ) ) )  →  𝑃  ≠  𝑄 ) | 
						
							| 12 |  | simp2l | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ran  𝐿  ∧  𝑦  ∈  ran  𝐿 )  ∧  ( ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 )  ∧  ( 𝑃  ∈  𝑦  ∧  𝑄  ∈  𝑦 ) ) )  →  𝑥  ∈  ran  𝐿 ) | 
						
							| 13 |  | simp3ll | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ran  𝐿  ∧  𝑦  ∈  ran  𝐿 )  ∧  ( ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 )  ∧  ( 𝑃  ∈  𝑦  ∧  𝑄  ∈  𝑦 ) ) )  →  𝑃  ∈  𝑥 ) | 
						
							| 14 |  | simp3lr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ran  𝐿  ∧  𝑦  ∈  ran  𝐿 )  ∧  ( ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 )  ∧  ( 𝑃  ∈  𝑦  ∧  𝑄  ∈  𝑦 ) ) )  →  𝑄  ∈  𝑥 ) | 
						
							| 15 | 1 2 3 8 9 10 11 11 12 13 14 | tglinethru | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ran  𝐿  ∧  𝑦  ∈  ran  𝐿 )  ∧  ( ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 )  ∧  ( 𝑃  ∈  𝑦  ∧  𝑄  ∈  𝑦 ) ) )  →  𝑥  =  ( 𝑃 𝐿 𝑄 ) ) | 
						
							| 16 |  | simp2r | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ran  𝐿  ∧  𝑦  ∈  ran  𝐿 )  ∧  ( ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 )  ∧  ( 𝑃  ∈  𝑦  ∧  𝑄  ∈  𝑦 ) ) )  →  𝑦  ∈  ran  𝐿 ) | 
						
							| 17 |  | simp3rl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ran  𝐿  ∧  𝑦  ∈  ran  𝐿 )  ∧  ( ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 )  ∧  ( 𝑃  ∈  𝑦  ∧  𝑄  ∈  𝑦 ) ) )  →  𝑃  ∈  𝑦 ) | 
						
							| 18 |  | simp3rr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ran  𝐿  ∧  𝑦  ∈  ran  𝐿 )  ∧  ( ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 )  ∧  ( 𝑃  ∈  𝑦  ∧  𝑄  ∈  𝑦 ) ) )  →  𝑄  ∈  𝑦 ) | 
						
							| 19 | 1 2 3 8 9 10 11 11 16 17 18 | tglinethru | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ran  𝐿  ∧  𝑦  ∈  ran  𝐿 )  ∧  ( ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 )  ∧  ( 𝑃  ∈  𝑦  ∧  𝑄  ∈  𝑦 ) ) )  →  𝑦  =  ( 𝑃 𝐿 𝑄 ) ) | 
						
							| 20 | 15 19 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ran  𝐿  ∧  𝑦  ∈  ran  𝐿 )  ∧  ( ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 )  ∧  ( 𝑃  ∈  𝑦  ∧  𝑄  ∈  𝑦 ) ) )  →  𝑥  =  𝑦 ) | 
						
							| 21 | 20 | 3expia | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ran  𝐿  ∧  𝑦  ∈  ran  𝐿 ) )  →  ( ( ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 )  ∧  ( 𝑃  ∈  𝑦  ∧  𝑄  ∈  𝑦 ) )  →  𝑥  =  𝑦 ) ) | 
						
							| 22 | 21 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ran  𝐿 ∀ 𝑦  ∈  ran  𝐿 ( ( ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 )  ∧  ( 𝑃  ∈  𝑦  ∧  𝑄  ∈  𝑦 ) )  →  𝑥  =  𝑦 ) ) | 
						
							| 23 |  | eleq2w | ⊢ ( 𝑥  =  𝑦  →  ( 𝑃  ∈  𝑥  ↔  𝑃  ∈  𝑦 ) ) | 
						
							| 24 |  | eleq2w | ⊢ ( 𝑥  =  𝑦  →  ( 𝑄  ∈  𝑥  ↔  𝑄  ∈  𝑦 ) ) | 
						
							| 25 | 23 24 | anbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 )  ↔  ( 𝑃  ∈  𝑦  ∧  𝑄  ∈  𝑦 ) ) ) | 
						
							| 26 | 25 | rmo4 | ⊢ ( ∃* 𝑥  ∈  ran  𝐿 ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 )  ↔  ∀ 𝑥  ∈  ran  𝐿 ∀ 𝑦  ∈  ran  𝐿 ( ( ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 )  ∧  ( 𝑃  ∈  𝑦  ∧  𝑄  ∈  𝑦 ) )  →  𝑥  =  𝑦 ) ) | 
						
							| 27 | 22 26 | sylibr | ⊢ ( 𝜑  →  ∃* 𝑥  ∈  ran  𝐿 ( 𝑃  ∈  𝑥  ∧  𝑄  ∈  𝑥 ) ) |