Description: The base set of a constructed metric space. (Contributed by Mario Carneiro, 2-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | tmsbas.k | β’ πΎ = ( toMetSp β π· ) | |
Assertion | tmsbas | β’ ( π· β ( βMet β π ) β π = ( Base β πΎ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tmsbas.k | β’ πΎ = ( toMetSp β π· ) | |
2 | eqid | β’ { β¨ ( Base β ndx ) , π β© , β¨ ( dist β ndx ) , π· β© } = { β¨ ( Base β ndx ) , π β© , β¨ ( dist β ndx ) , π· β© } | |
3 | 2 1 | tmslem | β’ ( π· β ( βMet β π ) β ( π = ( Base β πΎ ) β§ π· = ( dist β πΎ ) β§ ( MetOpen β π· ) = ( TopOpen β πΎ ) ) ) |
4 | 3 | simp1d | β’ ( π· β ( βMet β π ) β π = ( Base β πΎ ) ) |